Mechanical and actuation asymmetry in soft appendages leads to robotic propulsion in granular media

Shivam Chopra, Saurabh Jadhav, Michael T Tolley, Nick Gravish

Introduction

- Soft appendage enabled granular interaction is a fundamental mode of locomotion for polychaetes or bristle worms
- Flexible appendage enabled locomotion has not been studied as well in GM as in fluids.

In this study,
- we designed a soft anisotropic appendage to maximize thrust
- we characterized the effect of design and actuation parameters like torque amplitude and stiffness of the appendage

Design of the appendage

- **Soft State**: drag force is minimized by bending against the direction of rotation
- **Stiff State**: acrylic segments constrain the bending in one direction which leads to anisotropic stiffness, thus maximizing the drag

Experimental setup

Results

1) Time dependent sinusoidal torque actuation:
\[\tau = A \sin(2\pi ft) \]

2) Time and displacement limited square-wave actuation:
\[\tau = \begin{cases} +A, & \text{until } \theta = 180° \text{ or } T \leq \Delta t \\ -A, & \text{otherwise} \end{cases} \]

To limit the rotation angle of the appendage to a more realistic range when considering actuation on a robot (180°) we implemented the time and displacement dependent squarewave actuation.

Comparison of RFT modelling results with the experiments. We tested the appendage with five input torque amplitudes. We also measured the position data for three appendages of different stiffness.

Conclusion

- Increasing torque amplitude increased advance of the appendage
- Increasing stiffness of the appendage decreased advance
- Softest appendage performed the worst after limiting oscillation angle
- There is an optimum \(\Delta t \) for maximizing advance

Future Work

Demonstration of the appendage providing asymmetrical thrust on an untethered robot that can burrow and navigate in sand.

Acknowledgments

We would like to thank all the members of Gravish lab and BRDL for helpful discussions. This material is based upon work supported by the Office of Naval Research under grant number N00014-20-1-2373.