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ABSTRACT
The collective movement of animals has long been a source of inspiration for multi-agent swarm
robotics. One of the fundamental goals for swarm robotics study is to understand how effective and
robust collective behaviors can emerge from simple interactionprinciples.When animal or robot col-
lectives are in high-density configurations the ability for visual or auditory sensing is diminished and
the opportunities for interacting through mechanical contact are enhanced. In this paper, we study
how robots thatmove through lateral body undulation in close proximity are capable of synchroniz-
ing their oscillatory gaits through contact interactions between adjacent robots. Critically, gait phase
synchronization occurs without the requirement for robot–robot communication, and instead can
be engineered as an emergent property of the robot control system. We present a proprioceptive
feedback control system that generates collective gait phase synchronizationof undulatory robots in
experiment and simulation. We first validate this control system using a simple one-dimensional toy
model to demonstrate how proprioceptive feedback governs phase synchronization. Simulations
and experiments with undulatory three-link robots further demonstrate how phase synchroniza-
tion can be controlled. Lastly, we demonstrate that robot pairs moving in a confined tunnel can
synchronize their movements which leads to faster group locomotion through confined spaces.
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1. Introduction

Coordination of collective motion in robot groups is
a fundamental challenge in swarm robotics [1]. Cen-
tralized approaches to the planning and control of col-
lective motion require long-range communication and
perception capabilities among robots, so that a cen-
tral planning system can plan the motion of the group.
Alternatively, decentralized control approaches rely on
motion planning algorithms that run independently on
each robot based on local information exchange between
robots. However, in many of the established approaches
for multi-robot control the robots exchange informa-
tion through sensors and communication protocols. In
this paper, we explore an example of emergent collec-
tive robot motion in which no information is exchanged
and instead robots act only on internal state sensing,
called proprioception. Through the appropriate design
of control feedback, we are able to generate undulatory
snake-like robot collectives that synchronize the phases
of their undulatory gaits when in close proximity.

Synchronization of movement is a common collective
behavior in many biological systems. For example, many
swimming microorganisms are capable of synchronizing

CONTACT N. Gravish ngravish@eng.ucsd.edu

Supplemental data for this article can be accessed here https://doi.org/10.1080/01691864.2022.2050810

their body or appendage motion by interacting with
their neighbors through fluidic forces. Recent studies
suggest that both long-range hydrodynamic interactions
[2,3] and short-range contact interactions [4,5] can bring
about the stable, synchronized collective motions in
these systems. For small organisms such as bacteria,
the synchronized motion of cilia [6], and flagella [7]
are driven by fluid–mechanical interactions. However, in
larger organisms such as the worm C. elegans hydrody-
namic interactions are less important, and instead, inter-
action through contact becomes the predominant factor
for gait synchronization [8]. Even for smaller systems,
mechanical contact interactions may be of importance in
high-density population scenario [9].

The work presented here is inspired by the collec-
tive undulatory synchronization observed in groups of
swimming worms [8,10]. C. elegans is observed to pro-
duce undulatory movements by a propagating sinusoidal
wave, traveling from head to tail [11]. Recent stud-
ies have determined that intermittent mechanical con-
tact is responsible for synchronization of the undula-
tory gaits of worm groups [8]. Biomechanical and neural
experiments have demonstrated that the generation of
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undulatory body motion is largely through local propri-
oceptive reflex responses along the body that sense the
local body bending and generate a bending actuation in
response [12,13]. Thus the body bending wave propaga-
tion occurs as a ‘reflex chain’ in which the wave propaga-
tion doesn’t involve communication between oscillators
and instead responds only to the bending state of the local
body region. Experiments have demonstrated this local
oscillator principle by isolating body regions and showing
that a propagating wave is halted at a body region where
bending is inhibited [12]. In the work proposed in this
paper, wewill include oscillator coupling terms to enforce
the generation of traveling wave, however, the gait phase
synchronization will occur through proprioceptive reflex
responses in the joint controller.

In the following work, we will demonstrate theo-
retically and experimentally that oscillators with only
proprioceptive feedback can enable synchronization of
robot gaits through intermittent contact. We further
demonstrate how an inhibitory versus excitatory pro-
prioceptive gain controls whether robots synchronize to
in-phase versus opposite-phase motion. We lastly show
how this is useful for emergent coordination of snake-
like robots to traverse narrow gaps. This work is pre-
sented through a combination of analysis, simulation,
and experiment. Ultimately we demonstrate that syn-
chronization of undulatory gaits can be designed and is
beneficial for small groups of robots to traversal narrow
and confined environments.

2. A brief background on nonlinear oscillators
and synchronization

The mathematical framework for designing and analyz-
ing the synchronization of undulatory locomotion relies
on the study of nonlinear oscillators. An oscillator is an
autonomous dynamical system which exhibits a stable
limit cycle attractor [14,15]. A stable limit cycle is a closed
trajectory in the phase-space of the dynamical system
in which a surrounding region of initial conditions is
attracted onto the limit cycle. The closed trajectory of the
limit cycle implies that the system’s state variables will be
periodic, i.e. the system in steady state will oscillate.

Nonlinear oscillators have been extensively used in
the robotics field for generating stable periodic motion
trajectories of joints and bodies [14,16–19]. Limit cycles
are advantageous because: (a) the systems can produce
the periodic oscillations spontaneously without time-
dependent forcing, (b) the oscillation amplitude is robust
and resistant against transient perturbation with asymp-
totic return to the limit cycle, and (c) the oscillation
phase is marginally stable enabling phase perturbations
to persist. It is this last point which allows for phase

synchronization between oscillators. Limit cycle con-
trol of walking, swimming, and hopping robots have
demonstrated the robustness of these control methods
in addition to novel adaptive behaviors which can adjust
to changing loads, environmental forces, and behaviors
[20–23].

In seminal work from Buchli, Righetti, and Ijspeert,
these authors introduced a principled approach to
designing dynamical systems that generate limit cycle
behavior for robot control [14]. The core of this method
is to work from a phase-radius coordinate system (PRCS)
approach for designing limit cycle behavior. For a second-
order dynamical system, the phase-radius coordinate sys-
tem effectively converts from the phase-space (which are
the equivalent Cartesian coordinates of the phase space)
to a polar coordinate form. Thus with the appropriate
rescaling of phase along the limit cycle (see [14] for
details), a PRCS limit cycle can be written as

φ̇ = ω (1)

ṙ = F(r) (2)

where φ is the evolution of phase along the limit cycle
trajectory and r is the radial distance from the origin
to the instantaneous system state (which can be high-
dimensional). The phase of an oscillator has a strict
definition that it must be a quantity that increases at con-
stant rate. In this work, we will use a slightly less strict
definition of phase which will be described in the next
section. The PRCS concept is advantageous because the
desired limit cycle behavior of the system is the starting
point for feedback design, and the PRCS system can even-
tually be recast into the desired phase-space coordinates
as necessary. Similarly, other dynamical systems can be
converted into PRCS for analysis of limit-cycle behavior.

When multiple limit cycle oscillators are coupled, the
neutral stability of the phase variable can lead to synchro-
nization phenomena [24]. Phase synchronization occurs
when oscillators with a common frequency align their
phases in often an in-phase, or anti-phase, arrangement.
If oscillators have different natural frequencies, in some
instances coupling can drive the group to a common
oscillatory frequency. The canonical model for such syn-
chronizing systems is the Kuramoto model of synchro-
nization [25] where the phase variables of oscillators are
directly coupled. In the appropriate regimes of coupling
strength and connectivity, this system will display a wide
range of phase and frequency synchronization behav-
ior. The Kuramoto system has been extensively studied
and there are many reviews of the system phenomenol-
ogy [26]. However, we note that a critical component of
synchronization in the Kuramoto system is the explicit
coupling between oscillator phases.Oscillator imust have
information about oscillator j to determine the relative
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phase difference. This is in contrast to themethodwewill
present in the next section which does not rely on shared
information across oscillators.

3. An illustrative model for phase
synchronization through proprioceptive
feedback control

3.1. Model definition and collision dynamics

Our ultimate goal is to develop a feedback control sys-
tem for the joints on an undulatory snake-like robot
that enables synchronization with other robots through
intermittent contact. In this section, we envision the con-
tact interactions between two ‘body elements’ of adjacent
robots who’s lateral movement are governed by a propri-
oceptive feedback law. From this toymodel, we will study
the process of phase synchronization and we will math-
ematically validate the phase convergence properties of
the proposed control framework. Lastly wewill introduce
the concept of a contact-to-contact returnmapwhichwill
be used to evaluate the phase adaption process here, and
which we will return to for analysis of multi-link robots.

We reduce the interaction between two snake-like
robots into two contact-coupled body elements (‘blocks’)
that oscillate laterally in one dimension (Figure 1 a). The
block lateral positions are given by x1 and x2 and for sim-
plicity we assume the blocks are zero-width (i.e. points).
The oscillatory motion of positions (x1, x2) are governed
by a phase oscillator which has frequencyω, and an adap-
tive feedback gain and proprioception function given by
γ and g(φm,i,φi) respectively

φ̇i = ω + γ g(φm,i,φi) (3)

Critically, the proprioception feedback function only
takes into account each block’s individual controller
phase φi and the instantaneous measured phase through
proprioception φm,i. We note that our definition of phase
is less strict than introduced in the previous section. We
refer to phase as the polar angle between the origin and
the current state in the phase-space. In the absence of
contact, the phase oscillator generates a constant phase
velocity, and we map the controller phase to the lat-
eral motion of the blocks in physical space through the
commanded position

x̃1 = R cos(φ1)− δ

2

x̃2 = R cos(φ2)+ δ

2
(4)

where the offset δ accounts for the separation of the equi-
librium oscillation point between the two blocks (i.e.
the lateral separation distance between the midline of
two undulating robots). We note that when a collision

between blocks occurs the commanded position and
actual position will not be equal, x̃i �= xi.

3.2. Modeling contact interactions

Now thatwehave defined the phase dynamics equation (3)
and their mapping to spatial position equation (4), we
motivate a convenient geometric visualization of the
block interactions. In Figure 1(b), we show two circular
limit cycles with radius R and centered on the x-locations
± δ

2 . The oscillator’s phase, φi, is given by the angle from
the x-axis to the controller’s location on the limit cycle
trajectory. In the absence of contact, the instantaneous
spatial position of each block is simply the projection
of the instantaneous controller phase onto the x-axis
(Equation 4). The blocks will collide with each other
when the position condition is met

R cos(φ1)− R cos(φ2) = δ (5)

When the blocks make contact with each other, we
assume that they both come to rest in contact (ẋi = 0).
We denote with the superscript ± the values of a vari-
able instantaneously before (−) and after (+) contact,
thus the controller phases immediately before contact are
φ−
i for example. During contact the controller phases will

evolve according to Equation (3) while the blocks them-
selves aremotionless. The relative phase difference�φ =
φ1 − φ2 determines the phase convergence properties of
a contact interaction with the most critical value being
the difference in phase between pre and post contact,
�φ+ −�φ− (Figure 1c).

Tomodel the control behavior during contactwemake
several very simple assumptions about the contact inter-
action between blocks: (1) while in contact the blocks
remain motionless and remain at positions determined
by Equations (4) for the phases φ−

i , (2) the blocks will
remain in contact as long as their commanded posi-
tions cause them to push against each other, and (3) the
blocks will lose contact and beginmoving again when the
commanded position results in a separation. Figure 1(d)
shows an example of this process: Step (1) before con-
tact the positions are governed by Equation (4). In steps
(2)–(3), the blocks make contact and their velocity drops
to zero. The controller phase continues to evolve around
the limit cycle governed by Equation (3). Since the block
on the left (red) is commanded to move to the right and
the block on the right (blue) is commanded to move left,
the blocks maintain pushing contact against each other
and are motionless. However, at step (4) the phase of the
right block finally reaches a value which causes the com-
manded position to begin pulling away from the contact
location (the blue block moves to the right), this releases
the contact interaction between the blocks and they will
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Figure 1. The phase oscillator model for the synchronization of contact-coupled blocks. (a) Two blocks are initially configured by sepa-
ration distance δ and perform horizontal harmonic motion around the respective equilibrium points (dashed line). (b) The limit cycle
schematic illustration of the oscillator interaction process. (c) The phase adaption effect emerges during the contact duration. The
plot compares the phase evolution under different actuation schemes (solid line: with feedback, dashed line: without feedback). (d)
The complete contact course is shown in steps 1–5 (circled and solid points indicated the measured and internal phases respectively):
(1) Two oscillators are at initial phase difference �− = φ−

1 − φ−
2 . (2) Oscillators start contact when position overlapping. (3) Inelastic

contact leads velocities to drop to 0 instantaneously. Measured phase φm,1 and φm,2 changes accordingly. (4) Oscillators stop interac-
tion when satisfying separation conditions. (5) Oscillators continue evolving until contact again and keep repeating steps 1–5 before
synchronization.

move according to the oscillator controller and spatial
mapping equations.

The loss of contact condition can be easily deter-
mined through the geometry of the limit cycles. The
block whose position is closer to zero before contact is
the obstructing block (e.g. the blue block in Figure 1
d). The obstructing block will keep obstructing until
its controller phase reaches a value of φ+

i determined
by the condition cos(φ−

i ) = cos(φ+
i ) and sin(φ−

i ) =
− sin(φ+

i ). Inwords, this condition iswhen the controller
phase causes the obstructing block to move from its cur-
rent position in the opposite direction of the pre-collision
velocity. For the example in Figure 1(d), this can be writ-
ten as the geometric relationship φ+

2 = 2π − φ−
2 . The

above rules describe a simple process wherein two bodies
controlled by position controlled servos will come into
contact and remain contact until one is commanded to
pull away.

3.3. Proprioceptive feedback andmeasured phase

In this section, we now turn to the proprioceptive feed-
back law, γ g(φm,i,φi), and the measured phase φm,i of

Equation (3). In the absence of a collision the motion of
the blocks will exactly track the commandedmotion, and
we thus assume that the measured phase, φm,i, is equal
to the instantaneous controller phase φi. However, when
a collision occurs the blocks will come to rest and the
instantaneous phase will differ from the actual measured
phase of the blocks based off of their spatial kinemat-
ics. We assume that spatial kinematics state is governed
by position (xi) and velocity (the yi axis, although this
does not hold generally for the experimental system).
Thus themeasured phase can be determined by the angle
generated from the equation

φm,i = arctan
(
yi
xi

)
(6)

Taking the y-component of the instantaneous state as
velocity (which does not hold generally for PRCS sys-
tems) then after a collision both velocities go to zero, and
thus yi = 0. This results in a measured phase of φm,i =
{0,π} depending on which quadrant the collision occurs
in. In the example of Figure 1(d), both measured phases
go to φm,1 = φm,2 = π .
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Our goal is to choose an appropriate proprioceptive
feedback function which can ensure that the limit cycle
oscillators converge to phase synchronization. Thus dur-
ing a collision the oscillator ahead in phase should be
slowed and the oscillator behind in phase should be
sped up. A simple candidate proprioceptive feedback law
that achieves this behavior is g(φm,i,φi) = sin(φm,i − φi).
This yields the overall phase oscillator controller

φ̇i = ω + γ sin
(
φm,i − φi

)
(7)

In the example of Figure 1 the red block is ahead in phase,
and the blue is behind (φ1 > π > φ2). Once both mea-
sured phases φm,i = 0 the proprioceptive feedback func-
tion becomes sin(π − φi) which simplifies to sin(φi).
During the collision, the oscillator ahead (φ1 > π) has
a phase rate that is slowed (sin(φ1) < 0), while the oscil-
lator behind (φ2 < π) in phase has a phase rate that is
increased (sin(φ2) > 0). Thus we propose that this pro-
prioceptive feedback lawwill result in phase synchroniza-
tion for a pair of laterally undulating one-dimensional
blocks.

Figure 1(c) shows an example of phase change dur-
ing a single contact event. The contact-coupled blocks
start with initial phase difference�φ− of 2.16, and a final
phase difference of�φ+ = 1.96 after contact is lost. Iter-
ating this process in the next section will demonstrate
that �φ asymptotically converge to 0 for appropriate
proprioception feedback, which indicates the in-phase
synchronization.

3.4. Synchronization analysis

We now propose an analytical method to calculate the
change in phase difference between the controllers before
and after collision. In this example, we will calculate the
collision-induced phase change for the case shown in
Figure 1(d) in which the right block obstructs the left
block. This method, however, is generalizable across any
collision condition.

When the blocks first make contact they are at posi-
tions x1 − x2 = 0 yielding R cos(φ−

1 )− R cos(φ−
2 ) = δ.

The initial phases at start of collision are denoted by
the superscript −. During the collision, the measured
phase for each oscillator becomes φm,1 = φm,2 = π and
the phase controllers simplify to

φ̇1 = ω + γ sinφ1 (8)

φ̇2 = ω + γ sinφ2 (9)

These two controller equations are uncoupled and can be
integrated directly through separation of variables∫ φ+

1

φ−
1

1
ω + γ sinφ1

dφ1 =
∫ t+

t−
dt (10)

∫ φ+
2

φ−
2

1
ω + γ sinφ2

dφ2 =
∫ t+

t−
dt (11)

The contact duration [t−, t+] is the same for both oscil-
lators and thus we have the equality∫ φ+

1

φ−
1

1
ω + γ sinφ1

dφ1 =
∫ φ+

2

φ−
2

1
ω + γ sinφ2

dφ2

(12)
These two equations have closed form and real integral
solutions as long as γ < ω

tan−1

⎛
⎜⎝ω tan

(
φ+
1
2

)
+ γ√

ω2 − γ 2

⎞
⎟⎠ − tan−1

⎛
⎜⎝ω tan

(
φ−
1
2

)
+ γ√

ω2 − γ 2

⎞
⎟⎠

= tan−1

⎛
⎜⎝ω tan

(
φ+
2
2

)
+ γ√

ω2 − γ 2

⎞
⎟⎠

− tan−1

⎛
⎜⎝ω tan

(
φ−
2
2

)
+ γ√

ω2 − γ 2

⎞
⎟⎠ (13)

Since this equation has many repeating terms we define
the function

ξ(φ±
i ) = tan−1

⎛
⎜⎝ω tan

(
φ±
i
2

)
+ γ√

ω2 − γ 2

⎞
⎟⎠ (14)

We now seek to solve for the unknown final phase φ+
1 in

terms of the other phases, which can be determined as

φ+
2 = 2π − φ−

2 (15)

φ−
1 = 2π − cos−1

(
δ

R
+ cos(φ−

2 )

)
(16)

and φ−
2 is a known parameter. Substituting Equa-

tions (15), (16) into Equation (13) yields

tan−1

⎛
⎜⎝ω tan

(
φ+
1
2

)
+ γ√

ω2 − γ 2

⎞
⎟⎠ = ξ(2π − φ−

2 )− ξ(φ−
2 )

+ ξ

(
2π − cos−1

(
δ

R
+ cos(φ−

2 )

))
(17)

Solving for the only unknown phase, φ+
1 yields

φ+
1 = 2 tan−1 (

tan
(
ξ(2π − φ−

2 )− ξ(φ−
2 )

+ξ
(
2π − cos−1

(
δ

R
+ cos(φ−

2 )

))) √
1 −

(γ
ω

)2 − γ

ω

)

(18)
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This equation thus provides uswith the final phase dif-
ference of the oscillators and can be used to solve for the
evolution of φ1 and φ2 before and after contact.

Now, we introduce the concept of phase return map,
which is an evaluation tool for phase adaption between
the two oscillators. In the case of our contact interacting
blocks, we have twomaps that iterate the phases from the
beginning to the end of the two dynamical regimes, in
contact and not in contact. The first map, C, is defined by
Equations (16) and (18) and maps the controller phases
at the beginning of contact to the controller phases at the
end of contact

C :
[
φ−
1
φ−
2

]
n

→
[
φ+
1
φ+
2

]
n

(19)

The next map, D, iterates the system through the non-
contact regime and determines the phases at the begin-
ning of the next contact from the phases at the end of the
previous contact.

D :
[
φ+
1
φ+
2

]
n

→
[
φ−
1
φ−
2

]
n+1

(20)

The composition of these two maps yields the collision-
to-collision phase, which tells us how the overall phases
(and phase difference between the two systems) change
from contact to contact

R : C ◦ D (21)

R :
[
φ+
1
φ+
2

]
n

→
[
φ+
1
φ+
2

]
n+1

(22)

Both phase return maps can be determined analyti-
cally and thus yield a predictable in-contact and non-
contact phase return map to evaluate collision-to-
collision behavior for contact interacting oscillatory sys-
tems. This approach has been previously used to study
the dynamics of hybrid systems such as hopping robots
[27,28]. To analyze these maps, we will look for fixed
points, where �φn+1 = �φn. In a collision-to-collision
map plot, these occur when the map crosses the line
of slope one. Lastly, the stability of the fixed points can
be determined by analyzing the slope (derivative) of the
map, at the fixed point. When the magnitude of the
derivative is less than unity, the fixed point is stable
because deviations from the fixed point get smaller over
time. Thus a stable phase synchronization behavior will
have a fixed point at�φ = 0 with slope less than 1.

3.5. Experimental validation of proprioceptive
synchronization

To test the modeling and analysis framework devel-
oped in the previous subsections, we performed exper-
iments with two simple robotic joints. We mounted two

Dynamixel servos (AX-12; Robotis) to a rigid platform
with rigid 3Dprinted links attached (length 18 cm, height
5 cm, width 1.5 cm). We commanded the angular posi-
tion of the motors to follow the control law described
by Equation (3) with the sinusoidal proprioceptive feed-
back law as defined in the previous section. The robots
were separated by a variable lateral distance �y (which
serves as δ in our previous simplistic model, Figure 1(a),
and variable longitudinal distance �x Figure 2(a)). As
the robot joints oscillated back and forth they came into
contact with each other and stopped moving during the
contact. We measured the phase difference immediately
before contact, φ−

i , and the phase difference immedi-
ately after contact, φ+

i , and constructed the experimental
collision-to-collision return map. We similarly generated
the analytical phase returnmap through numerical itera-
tion of Equation (6).We define the phase difference at the
nth collision as�φn, as the phase difference immediately
at the beginning of the collision (i.e.�φn = φ−

1 − φ−
2 ).

The evaluation of the collision-to-collision phase dif-
ference map describes the evolution of �φ over time.
Figure 2 illustrates the comparison of experimental and
model prediction of the collision-to-collision returnmap
for sinusoidal proprioceptive feedback and three values
of gain γ = [0.2, 0.4, 0.6]. When robots are separated by
a small lateral distance they will always converge to small
�φ ≈ 0 along the path of purple points and arrow line.
The comparison between the experimental data (blue
points) and the model predictions (red lines) is quite
good across the three gains evaluated. These experiments
indicate that contact interactions can potentially drive
gait phase synchronization in undulatory robots.

In Figures 3 and 4, we perform experiments with
variable lateral and longitudinal spacing. When the two
robots are separated by a specific lateral distance, they can
still demonstrate a convergence to a smaller�φ than the
initial phase difference. Again these experiments agree
well with the numerical predictions from our modeling
(Figure 3, blue points and red lines are data and model
respectively). However, with non-zero lateral spacing
(δ > 0 in analysis,�y > 0 in experiment) the robots will
converge to a non-zero �φ at which point they can no
longer collide. This can easily be seen from Equation (5)
in which non-zero δ yields phases forφi that have no con-
tact solution. This property has been called compatibility
in recent studies of undulatory synchronization [29].

In general, the model yields reasonable predictions of
the experimental data in Figures 3 and 4. The model
captures and predicts the phase convergence behav-
ior as observed in experiment. As the proprioceptive
gain is increased the experiment and the model con-
verge to phase locking faster (lower slope of return map;
Figure 3b–d). However, there are noticeable differences
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Figure 2. Experimental validation of phase convergence between contact-coupled oscillators. (a) Fixed body configuration: each robot
comprises two rigid links with one oscillatory joint and one fixed bottom, laid out by predefined longitudinal and lateral separation
distance�x,�y. (b) Contact return map frommodel prediction and experiment result with proprioceptive gain γ = 0.2 when�x = 0
and�y = 0.02m. Red line are the theoretical solution by numerical integral for two oscillators. Black star indicates when the returnmap
intercepts the unity slope line. Blue points are experimental phase states that two robots evolved to after collision from 50 sets of before-
collision phase states. The purple points with the arrow line illustrate the trajectory of phase convergence between the intermittent
contact. (c) and (d) The results of proprioceptive gain γ of 0.4 and 0.6.

Figure 3. The effective adaption region differs from lateral separation: (a) spatial layouts for the robot pairs. �x = 0.0 is fixed with
varying�y = [0.020, 0.036, 0.053]m from left to right. (b) Phase return map. The compatible region (left bottom) and anti-phase region
(top right) become larger with the increase of lateral distance.

between model and experiment. For example, in the
experiments we notice a discontinuity in the experimen-
tal data points that occurs near 3π/4 in Figure 3. We
believe that this discontinuity is associated with the link
geometry of the experiment (as compared to the 1Dblock
model of Figure 1). When the links collide with each

other in the�φ ≈ π regime they push against each other
with not just a normal contact force but also a tangen-
tial one. If the contact is not directly symmetric between
the two links that may slip and the contact interaction is
‘shorter’ andwouldn’t result in asmuch of a phase change
(and thus�φ for these slip interactions would like along
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Figure 4. The phase adaption process varies with longitudinal separation. (a) Spatial layouts for the robot pairs. �y = 0.02m is fixed
with varying �x = [0.05, 0.02, 0.00,−0.02,−0.05]m from left to right. (b) The joint angle adaption process within one period (single
collision). The spatially behind robot can easily adapt the individual phase to the front one.

the 1 to 1 line). Further evidence of this can be seen in
Figure 3 where this discontinuity is at a different angle
when thewidth is changed (or non-existent for thewidest
case). These are practical issues that are not present in our
simplistic toy model that we use to motivate the analysis
of these systems.

Furthermore, when there is longitudinal separation
between the robots the phase convergence behavior is
altered from our simpler modeling in previous sections.
Figure 4 shows that longitudinal separation �x influ-
ences the interaction forces between the robots and thus
the robot that is spatially behind the leading robot can
more easily adapt the phase of the front robot because
of the unbalanced moment of force. This spatial affect
is not accounted for in our simple model and yet may
complicate synchronization behavior in freely moving
undulatory robots.

The modeling method of this work focused on a
very narrow range of potential contact interactions. Our
assumption that when the robots contact they come to
rest is based on the following logic. There are in princi-
pal two types of collisions: (1) head on collisions like we
model here where two robots collide with opposite sign
commanded velocity and (2) rear end collisions in which
the robots collide and potentially move together as you
suggest with the same sign of commanded velocity.While
it is possible for phase adaptation to occur in the rear end
collisions, the phase change is much smaller per collision
than in the case of the head on collisions. This is because

the robots are still able to move when in contact and
thus there is not the large change between measured and
controller phase that results in phase adaptation. How-
ever, the head on collisions result in large phase change
because the robots come to rest during contact. We note
that a rear end collision typically evolves to the case of
a head on collision because while they move in contact
eventually one of the robots reaches its turning point and
reverses direction turning into a head on collision which
results in both the robots stopping moving and coming
to rest. Thus, while there may bemany other types of col-
lisional interactions that can occur, the head interactions
are likely to result in the largest phase change and thus
dominate the phase dynamics among the group.

4. Design principles of adaptive phase
controller

In this next section, we now study the role of the propri-
oception feedback function on synchronizing the phases
of undulatory gaits. We study this process using the
collision-to-collision return map approach presented in
previous sections.

4.1. Functional form influences synchronization

The proprioception function, g(φm,φ), measures the dif-
ference between the measured phase and the controller
phase. In the previous section, we used a trigonometric
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Function Mathematical expression

Sinusoidal sin(φm − φ)

Linear mod (φm − φ + π , 2π)− π

Tilted sinusoidal sin(φm − φ + sin(φm − φ − 3
4 ))

Exponential
sign( mod (φm − φ + π , 2π)−
π)(e| mod (φm−φ+π , 2π)−π | − 1)

function sin(φm − φ) to modulate the internal phase of
the toy model and the one-joint robot links. The peri-
odicity and boundedness of the function guarantee a
smooth phase evolution. However, the periodic nature
of the feedback function results in a potential defect: the
system has the same regulation effect for large (�φ →
π) and small (�φ → 0) phase difference regions. This
could potentially lead slower convergence to phase syn-
chronization when initial phases are such that �φ ≈ π .
This issue can be resolved by taking alternative functional
forms g(φm,φ). In the table below, we list four functional
forms of g(φm,φ) that we will investigate in the context
of phase synchronization: Figure 5(a) shows plots of these
four functions versus phase difference.

4.2. Proprioceptive gain influences phase
synchronization

We study the phase convergence properties of these
four functions using the collision-to-collision returnmap
(Figure 5b). The linear and exponential proprioceptive
functions can dramatically change the convexity of return
map curve, ensuring better faster convergence from large
phase differences. Meanwhile, the tilted sinusoidal theo-
retically resolve the anti-phase fixed point that exists for
the sinusoidal proprioceptive feedback.

The feedback adaptive function, g(φm,φ), is multi-
plied by a single proprioceptive gain term γ . We hypoth-
esize that the phase synchronization dynamics are depen-
dent on the sign and magnitude of γ . Here we study the
role of γ for the sinusoidal feedback function. Figure 5(c)
shows that when 0 < γ < ω, we observe that oscillator
phases always achieve synchronization and the magni-
tude of γ controls the shape of the collision-to-collision
return map which in turn affects convergence speed.
However, γ is restricted not to exceed ω, otherwise the
synchronization dynamics break down because the oscil-
latory motion is no longer smooth. When γ < 0, the
oscillator is driven to anti-phase synchronization as the
�φ = 0 fixed point is no longer stable, while �φ = π

becomes stable. Figure 5(d) presents the stability of the
�φ = 0 fixed point, which is calculated as the deriva-
tive of the collision-to-collision return map evaluated
at �φ = 0. When the magnitude of the slope of the
fixed point is less than unity, the fixed point is stable

because deviations from the fixed point get smaller over
time. When the magnitude of the slope is greater than
unity, the fixed point is unstable. This clearly shows how
changing sign of γ changes the stability of in phase
synchronization. When γ = 0, the gain puts the con-
trol into a pure feedforward form with no feedback, and
the dynamics equations can be integrated to resolve the
time-dependent actuation. With no feedback gain, the
collision-to-collision return map is �φn+1 = �φn and
the phase difference never changes.

5. Proprioceptive synchronization in three-link
undulatory robots

5.1. Three-link robot design and control

A bio-inspired n-link robot can locomote through body
undulations controlled by an oscillatory networks com-
prising n−1 actuated joints. The joint oscillations just
require phase lag between neighbor links from head to
tail that can yield a traveling wave of actuation. A com-
plete travelling wave can be generated through a set of
angles α1,α2, . . . ,αn−1, whose phases φ1,φ2, . . . ,φn−1
uniformly distribute around one cycle, using the follow-
ing equation:

αi = ri cos(φi) i = 1, 2, . . . , n − 1 (23)

where ri and φi are governed by proposed collision-
driven adaptive phase oscillator:

φ̇i = ω + γ g(φm,i,φi)

ṙi = ri(μ− r2i )
(24)

The framework enables the phase adaption effect to
emerge between different joints through collisions. For
a single robot that does not contact any other robots, the
joint–joint phase difference is held constant by the con-
troller. However, when robots interact through contact
the influence of the proprioceptive feedback can augment
the traveling wave generation. It is challenging to retain
a stable traveling wave under extreme collision scenar-
ios because the adaption effect frequently perturbs the
phase states. Therefore, as Figure 6, we introduce the
inter-oscillator coupling and therefore transforming the
oscillator system into a Central Pattern Generator (CPG)
network as

φ̇i = ω + γ g(φm,i,φi)+
n∑
j=1

λf (φi,φj)

ṙi = ri(μ− r2i )

(25)

In Equation (25), the adaptive function g(φmi ,φi) of
proprioceptive gain γ ∈ [0,ω] is employed to enable
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Figure 5. Proprioceptive feedback design changes the convergence of the contact return map. (a) Demonstration of adaptive function
on [−π ,π ]. (b) Adaptive function f (�φ) changes the convexity of contact return map. Different colors stand for different forms of the
adaptive function: blue – sinusoidal, red – tilted sinusoidal, dark – linear, and green – symmetric exponential (see details on (a)). The
functions are all symmetrical around the origin with period T = 2π . The diamond points are simulation results, which are well matched
with the respectiveprediction curves. (c) The sign andmagnitudeof proprioceptive gainγ .When0 < γ < ω, twooscillators synchronize
to in-phase status, the magnitude of γ controls the speed of the synchronization process. When γ < 0, the oscillators are driven to the
anti-phase synchronization. When γ = 0, the oscillators evolve as time-dependent actuation without synchronization. (d) Convergence
rate at φ−

d = 0 versus gain values.

phase synchronization. The function f (φi,φj), a.k.a. the
CPG function, with inter-CPG couplings λ ∈ [0, 1], gov-
erns the traveling wave pattern through the internal
phase regulation among joints. The form of the functions
can be considered as

g(φm,i,φi) = sin(φm,i − φi)

f (φi,φj) = sin(φj − φi − ψ)
(26)

where the phase offset ψ controls the relative phase dif-
ference between adjacent joints. In our setup,ψ is chosen
to realize the specific motion pattern, i.e. sinusoidal wave
along longitudinal body for three-link robot (ψ = 2π

3 )
and four-link robot (ψ = π

2 ). We implement this con-
trol structure in experiments and simulations of three-
link robots. The geometry of the robots is shown in
Figure 7(a). In experiment we use two Dynamixel AX-12
motors as the joints, controlled through position com-
mands. We also simulate these systems in PyBullet using

similar geometry as in experiment, and joints that are
controlled through position commands.

5.2. Space and phase dynamics in channel traversal

In our first experiments and simulation, we study how
multiple robots in confinement can reach phase synchro-
nization through contact. In simulation, two three-link
robots are placed inside a parallel channel which limits
how far they can be pushed away from each other and
which enforces collision interactions (Figure 7b). They
are initialized with specific phases and center positions.
The channel width CW and proprioceptive gain γ vary
from 0.11 m to 0.13 m and 0 to 1, respectively. The rela-
tive lateral separation distance �x and phase difference
�φ are collected to generate swarm configuration. For
the robot pair system, �x and �φ precisely describe
the dynamic difference in spatial and phase dimensions.
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Figure 6. Control scheme for the single multi-link robot.

We define the return map of the robot pair systemM as

M :

⎡
⎣ φ+

1
φ+
2

�x+

⎤
⎦
n

→
⎡
⎣ φ+

1
φ+
2

�x+

⎤
⎦
n+1

(27)

which is equivalent to

M : (�φ− = φ−
1 − φ−

2 ,�x−)

−→ (�φ+ = φ+
1 − φ+

2 ,�x+) (28)

Figure 7(c) shows that in simulation three different
steady-state configurations of spatial shift (�x) and phase
shift (�φ) emerge from the synchronization process.
We find that simulations at varying initial �x and ini-
tial �φ cluster along a stair-stepped curve. Overall the
steady states that emerge converge to the three compat-
ible regions along the gradient of the heatmap, one link
ahead, in-phase, and one link behind states. When the
gain is set to zero no phase change can occur and we see
that the robots populate the central curve by adjusting
�x based on�φ. This central curve is called the compat-
ibility curve [30]. The bottom-middle and bottom-right
panels in Figure 7(c) verify that gain and channel width
can help increase the attraction of compatible regions.

5.3. Proprioceptive gain determines the collective
locomotion pattern

We next study how larger groups of robots are capable
of synchronizing their gaits (Figure 8). In these experi-
ments, we used four robots placed in a channel of width
0.22m. The robots were actuated given by Equation (25)
as introduced in the previous section. We used a sinu-
soidal proprioceptive feedback function and we varied
the gain, γ . The robots were initiated at one end of the
channel with the same longitudinal positioning across all
robots.

Figure 7. The compatible configuration is associated with channel width and proprioceptive gain, γ . (a) Robot geometry parameter
illustration. b) Simulations are performed with two robots in a narrow channel of channel width, CW. Robot pairs may achieve gait com-
patibility through contact-driven spatial translation and phase adjustment in the confined space. (c) A heat map of observed probability
density from simulations starting at different lateral separation�x/λ versus kinematic phase difference�φ. Darker areas correspond to
a higher probability of observation in that state. White points indicate the final states of the two robots after 150 periods of oscillation.
The simulation was performed under different channel width and gain (= γ

ω
) conditions 1–4. The initial setup of the simulations is taken

from every grey gird point in the map, i.e.�x/λ = –1:0.1:1,�φ = -π :0.1π :π .
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Figure 8. Collectivebehaviors hingeuponadaptive coefficientγ . (a) Robotgroups are actuatedwith the same intrinsic frequencyω = π

but different adaptive coefficient γ = [−1, 0, 1,π , 5] from top to bottom. (b) The steadymotion pattern (from top to bottom): disordered
motion, compatible motion, partial synchronized motion, complete synchronized motion, and suppressed motion.

In our first experiments, we set the feedback gain
to γ = −1 which in analysis leads to anti-phase syn-
chronization. We did not find that the robot group
achieved perfect anti-phase synchronization, but instead
the robots exhibited controller phases that diverged and
drifted over a large range during the experiment. It is
likely that the mobility of the robots, as they could push
each other away spatially, disrupts the anti-phase syn-
chronization process and leads more general disordered
undulations among the group.

When the proprioceptive feedback was turned off
γ = 0 the robots pushed against each other and shifted
their longitudinal positioning to achieve a configuration
which allowed them to oscillated indefinitely. The lack of
phase adaptation in these experiments meant that every
situation was different depending on the random initial
phases chosen.

When the feedback gain was less than the oscillator
frequency (γ < ω; ω = π) the robot group was capa-
ble of producing collective in-phase behavior robustly.
Figure 8(b) shows the final configurations of the four
robots in which for γ = 1,π the robots achieve final
synchronized group motion despite starting from very

different initial phases. The larger gain experiments pro-
duced faster convergence to synchronization.

Lastly, we studiedwhat happenswhen γ > ω in exper-
iments with four robots. In these experiments, the joints
failed to oscillate smoothly and instead in many exper-
iments locked or halted motion. This is likely because
even small noise from the proprioceptive feedback func-
tion is amplified significantly by the gain term, and thus
leads to spurious oscillatory dynamics.

5.4. Synchronization enhance channel traversal
ability

In this last section, we study how synchronization of
gaits can improve the collective locomotion performance
of undulatory robots. We first performed simulations
of robot pairs moving in a channel of width 0.095m
(Figure 9a) and moving under the influence of a simu-
lated viscous fluid force (i.e. swimming at low Reynolds
number [31]). To establish a baseline for performance
without proprioception, we fixed the robot pairs at a
constant phase difference between 0 and π and mea-
sured the time to traverse a distance of 0.8m along the
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Figure 9. Channel traversal efficiency. (a) Simulation configuration of robot pair. Phase difference is fixed in the process. (b) Simulation
results show that in-phase robot pairs always perform regular and high-speed swimming. The fine points record the average time cost
of two robots for swimming 0.8m length channel with different phase difference.

Figure 10. Robot pairs passability. (a) An overhead picture of two robots challenged to move through a narrow channel. (b) Scale
appendages on bottom surface provide anisotropic friction interacting with grass ground. (c) Relative phases between the two robot
showing: in-phase synchronization at 0 < γ < ω, anti-phase synchronization at γ < 0, and non-feedback at γ = 0. (d) The synchro-
nization status of robot pairs take effect on the moving efficiency. Synchronized pairs initialized with gain= 0.3 and�φ0 ranging from
0 to π cost increasing time to travel the 0.5m length channel.

channel length. We observe that the passing time non-
monotonically increased from phase differences of 0 to
π . Importantly, the smallest phase differences (0 − π/8)
exhibited the shortest traversal time compared to other
phase differences. Thus synchronization of robot gaits
can improve locomotion speed of robot pairs when in
confined environments.

We experimentally test whether robot gait synchro-
nization can improve performance when two robots
are challenged to pass through a narrow channel
together. To enable the robots to locomote forward we

performed these experiments on an artificial grass sur-
face (Figure 10a), and we placed angled plastic beams
as the scale appendages on the bottom of the robots
body to generate anisotropic friction (Figure 10b). The
scales ensure the robot can move forward longitudinally
through the interaction with the grass. For stability we
added an extra joint and link to these robotsmaking them
four-link snake-like robots. We used a similar control
method as described above in Equations (25) and (26),
i.e. ψ = 3π

4 , λ = 0.4. The channel the robots were to
traverse was formed from steel beams that angled from
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a wider spacing to a narrow constriction of 0.21m in
width. The robots were placed in the wider entrance and
were separated laterally and aligned longitudinally. Dur-
ing the first motion stage (around first 10 seconds), the
robots moved in the wider space and the phase adaption
through contact did not significantly impact the robot
phases (time before dashed line in Figure 10 c). However,
when traversing the narrow channel (time after dashed
line in Figure 10(c), the two robots start to interact more
significantly through contact and influence each other’s
phase through proprioceptive feedback. In Figure 10(c),
we show three examples of phase change versus time
for a positive, negative, and zero proprioceptive gain. As
expected based on our previous modeling and experi-
ments the robots synchronized to in phase or anti-phase
behavior based on the sign of γ . These experiments illus-
trate that phase adaption and convergence effect were
influenced by two factors: (a) channel width influences
whether the robots can robustly interact with each other
which is required to achieve synchronization and (b) the
sign of the proprioceptive gain determines the ultimate
synchronization capability of the robots.

To validate the beneficial role of gait synchronization,
we performed separate experiments in which the robots
were held at a fixed phase difference (i.e. γ = 0) and
we measured the time duration for the robots to com-
pletely pass through the channel. We observed a modest
decrease in the traversal time for the synchronized robots
(�φ = 0; Figure 10 d) and a longer traversal time for
larger phase differences. These experimental results are
in accordwith the simulation results discussed previously
(Figure 9).

6. Discussion

In this study, we demonstrated that undulatorymotion in
biologically inspired robots can be synchronized through
contact interactions without the need for robot-robot
communication. By designing appropriate propriocep-
tive feedback into a robot’s undulatory controller we
are able to generate emergent synchronized motion. The
shape of the collision-to-collision return map hinges
on the proprioceptive gain and proprioceptive function.
Proprioceptive feedback inspired from neuromechanical
studies of C. elegans enable emergent phase synchroniza-
tion and determine the pattern of collective behaviors.
Robot pairs that traverse narrow channels can synchro-
nize their gait to move effectively together in confined
space. Overall, these results suggest new methods for
designing feedback control of emergent phase synchro-
nization in a robot swarm.

The synchronization of coupled oscillator systems has
a long and rich history in nonlinear dynamics, robotics,

and neuroscience [24]. However, these systems are typ-
ically coupled directly through the control system or
dynamical equations of motion. For example, as men-
tioned in Section 2 the Kuramoto model of synchro-
nization relies on direct ‘sharing’ of oscillator phase
information between oscillators.More recently, examples
of oscillator coupling that occurs through self-motion
of the body have demonstrated synchronization and
entrainment of undulatory gaits. For example, ‘reflex-
ive’ like behaviors in snake robots that respond to local
body bending curvature can generate emergent loco-
motor gaits [32]. Coupling such oscillators with exter-
nal force sensors that respond to hydrodynamic body
forces can similarly organize coordinated and coupled
body motion in a swimming robot [33]. The design of
emergent locomotor gaits through mechanical coupling
and active actuation responses is an area of great inter-
est for future adaptive robots. Furthermore, the study of
bio-inspired robots that emulate principles from their liv-
ing systems counterparts can provide new insights into
biology [34].

In this work, we propose to solely use propriocep-
tive information for coordinating motion among robots.
In similar work, Sato et al. [35] have developed a
method of generating adaptive undulatory locomotion
through a ‘discrepancy function’ which is quite similar
to the proprioceptive feedback in the work presented
here. The discrepancy function of Sato et al. monitors
the joint error of an undulatory snake robot and pro-
duces an adaptive phase through a simple differential
equation between the discrepancy function and phase
adaptation. The addition of other internal state vari-
ables, such as this discrepancy function, may greatly
expand the robustness of the phase synchronization
process and the speed of adaptation. This will be of
great interest in future studies of contact-mediated robot
coordination.

In addition, by adding extra state variables to the con-
trol system one can potentially enable a broader range of
synchronization phenomena. For example, in the work
studied here all robots had the same intrinsic oscilla-
tor frequency. Yet arguably the most striking examples
of synchronization are among oscillator populations with
different intrinsic frequencies (as in the case of the clas-
sic Kuramoto system [25]). Thus it will be interesting
to determine how robust the method proposed here is
to frequency variation. If the frequency synchronization
among undulatory robots is not possible with the cur-
rent methods, one may look to additional control ele-
ments such as the discrepancy function [35] or adaptive
oscillators [36,37].

Collective systems that interact through contact have
been extensively studied in the physics of granular
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materials [38] and activematter [39]. The emergent prop-
erties of these systems, such as clustering for example
[39], may present unique opportunities for control of
multi-robot systems. From the physics community there
has been recent interest in the emergent dynamics of sim-
ple, ‘active’ robots that interact through contact [40,41].
Similarly, from the swarm robotics community there
has been recent interest in leveraging contact and col-
lisional interactions as a means of coordinating robot
group behaviors [42–47]. Typically in this previous work
only repulsive normal force contacts have been consid-
ered. However, there has been recent interest in cohesive
interactions between robots through magnets [48] or
shape interlocking (called entanglement) [49]. For exam-
ple, a recent studied inspired by the collective behavior of
blackwormshas demonstrated howmechanical entangle-
ment and coordinated movement between simple robots
can allow the group to move collectively along tempera-
ture gradients [50].

This work represents a first examination of how inter-
mittent contact can be used for information exchange and
designed emergent behaviors. Future work will explore
howmore complex group behaviors such as turning, clus-
tering/expanding, and group sensing can be enabled by
contact mediated ‘communication’. Similarly, examina-
tion of how limit-cycle motion generation can lead to
more complex gait behaviors. For example how more
complex dynamical attractors can yield gaits that are
modified when in the presence of other robots and in
complex environments. More broadly, the convergence
of physics, dynamics, and robotics represents an exciting
new direction for discovering and controlling emergent
phenomena [51].
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