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Abstract—1In most instances, flapping wing robots have
emulated the “synchronous” actuation of insects in which the
wingbeat timing is generated from a time-dependent, rhythmic
signal. An understudied area in flapping wing robotics is
that of “asynchronous” actuation in which the wingbeat is
self-excited through state-dependent feedback. The internal
dynamics of asynchronous insect flight muscle enable high-
frequency, adaptive wingbeats with minimal direct neural
control. In this paper, we investigate how the delayed stretch-
activation (dSA) response of asynchronous insect flight muscle
can be transformed into a feedback control law for flapping
wing robots that results in stable limit cycle wingbeats. We
first demonstrate in theory and simulation the mechanism
by which asynchronous wingbeats self-excite. Then, we imple-
ment the feedback law on a dynamically-scaled robophysical
model as well as on an insect-scale robotic flapping wing.
Experiments on the large- and small-scale robots demonstrate
good agreement with the theory results and highlight how
dSA parameters govern wingbeat amplitude and frequency.
Lastly, we demonstrate that asynchronous actuation has several
advantages over synchronous actuation schemes, including the
ability to rapidly adapt or halt wingbeats in response to external
loads or collisions through low-level feedback control.

I. INTRODUCTION

The field of bioinspired flapping-wing micro-air vehicles
(FWMAV5s) has seen major advancements in the last decade.
Researchers have achieved controlled flight on tethered [1],
[2] and untethered [3]-[6] FWMAVs at the centimeter scale.
They have integrated sensors [7]-[10] and implemented
robots with a wide range of actuators including piezo bending
actuators, mini DC motors [11]-[13], soft DEA actuators
[14], and electromagnetic coils [15]. Others have devel-
oped autonomous control algorithms that (given sufficient
knowledge of the state of the robot) can achieve not just
stable hovering, but also impressive feats of agility [16]. The
design, fabrication, and control tools now exist to design
novel FWMAVs capable of flight.

However, the performance of such robots still lags behind
that of their insect muses. The agility and versatility of
insects like flies, bees, and dragonflies is unmatched by
any FWMAV at similar scales. Untethered FWMAVs at
the centimeter scale must be supplied with extremely high-
power energy sources—lasers [17] or high-wattage light
sources [3]—while insects are efficient enough to sustain
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Fig. 1. a) Insects such as moths use synchronous actuation. This is char-

acterized by a periodic signal from an internal source with rate wyingbeat-
b) Bumblebees are an example of an insect using asynchronous actuation.
This is characterized by feedback, where the rate of the mechanical system
Wmech interacts with the rate of the feedback wyreedpack to produce the
wingbeat.

flight over long distances during foraging and migration [18],
[19]. Additionally, FWMAVs are often much more delicate
than insects, constructed of 100-micron-thick carbon fiber,
thin polymer sheets, and brittle piezoelectric materials. The
dynamics of flight are sensitive to changes in mechanical
properties (wing geometry, inertia, etc.), and yet insects are
able to continue to fly despite damage caused by the envi-
ronment or other animals [20], [21]. There is still much for
us to learn about how insects achieve their impressive flight
performance and translate these into advances in robotics.

Flapping wing insects can be classified into one of two
actuation strategies: synchronous and asynchronous (Fig. 1).
Insects such as moths generate wingbeats through a periodic
signal generated by the nervous system that is “synchronous”
with the wingbeat, while insects such as bees rely on a strain-
dependent response of the muscle to generate self-excited
wingbeats whose frequency is higher than signals from the
nervous system and therefore “asynchronous” from the neu-
ral signals. Asynchronous muscle actuation is thought to pro-
vide several distinct advantages to flying insects including:
high wingbeat frequency (wbf), adaptive behavior after wing
damage [22], and separation of power and control. [23]-[25].
To the authors knowledge, all previous actuation of flapping
wing robots have relied on synchronous actuation strategies.
We hypothesize that asynchronous actuation methods provide
adaptive behaviors that could be beneficial for flapping wing
robots.

A key specialization in asynchronous muscle is a phe-
nomenon called delayed stretch activation (dSA), wherein,
after the muscle is stretched, its force will continue to
increase, reaching a peak that is delayed in time w.r.t. the
stretch. (Fig 2a). Due the time delay in stretch-activated
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Fig. 2. a) The force activation response of the muscle of a giant water bug
to a step strain. Data adapted from [25] and muscle diagram adapted from
[33]. b) The response of the dSA transfer function to a strain-rate impulse
is qualitatively similar given the right choices of p, r3, and k.
peak force, two such muscles arranged antagonistically in the
insect thorax tend to naturally oscillate, flapping the wings
with no direct input from the nervous system. Biologists
have studied asynchronous muscle in isolation by carefully
removing the muscles from the insect thorax and applying
techniques adapted from materials science such as measuring
cyclic force-displacement, and force response to position step
inputs [26]-[28]. Their results have been used to characterize
asynchronous muscle as an active material and compare
muscle behavior across species [25] and between lines of
transgenic flies [29]. However, biologists have been typi-
cally interested in the elusive bio-molecular dynamics from
which the dSA phenomenon arises. To enable asynchronous
actuation in FWMAVs, it is necessary to characterize the
system level behavior of asynchronous flight: the dynamical
interactions between asynchronous muscle, the elastic thorax
[30] and the complex aerodynamic forces on the wing [31].
In this manuscript we seek to establish principles of
asynchronous actuation for flapping wing robots and to
demonstrate some unique properties of dSA actuation for
adaptive and resilient flapping wing dynamics. We begin
by deriving the dynamical equations for dSA and show
that it is dynamically similar to a second-order low-pass
filter on the strain rate of the muscle. We then integrate
the dSA feedback law with the nonlinear equations of
motion of a “spring-wing” system with aerodynamic drag
and elastic energy storage [32]. Using the equations of
motion, we derive conditions for the existence of stable limit
cycles and use a combination of simulation and robophysical
model experiments as validation. We present experiments in
the robophysical model that show that an asynchronously-
actuated robot has a compelling ability to rapidly adapt
wingbeat properties and respond to collisions with no direct
control. Lastly, we implement dSA feedback in an insect-
scale flapping wing as a proof of concept towards creating a
full asynchronous FWMAV.

II. THE DYNAMICS OF DSA

The first step towards integrating dSA into a robotic
flapping system is to express the observed behavior of
asynchrononus muscle as a function of the state of the
system. The time-dependent force response (fstcp) Of the
muscle to a step change in its length (see Fig. 2a) has been

parameterized as the sum of three exponents [33]:
Fstep(t) = Koe ™™ + K3(1 — e ™) + Kye ™' + ¢ (1)

Each term corresponds to a phase of the response: An
extremely fast decay (ro >> wbf), a slower rise (r3 ~
wbf), and a very slow decay (ry << wbf). The constant
c represents the passive stiffness of the muscle. This 7-term
model is fitted to stretch-and-hold data collected from insect
muscle fibers and used to evaluate the behavior of the muscle.

To ease the complexity of analyzing the behavior of a
system with dSA forcing, we focus on the Phase 3 and 4
dynamics, which are of the same order as the wbf [25].
We choose to focus on the 73 term in particular because
it has been shown to vary linearly with wbf across a range
of insects [25]. The very fast dSA dynamics (Phase 2) are
effectively damped out by the spring-mass-damper dynamics
of an elastic flapping wing. Setting K3 = K4y =1, c =1,
and defining the ratio of the slower rates, x = 74/r3, we can
write:

fstep(t) = —e " + e rrst )

Since r4 > r3, k < 1, and typically is in the range of 0.01 —
0.3 in insects [25]. By tuning r3 and x and adjusting the peak
amplitude via a muscle “strength” term, p, we can match the
shape of the asynchronous muscle response (Fig. 2b).

A. A Linear Systems Model of the dSA phenomenon

The expression in Eq. 2 is the response of the system to a
step in the muscle strain, which is equivalent to an impulse in
the strain rate. This implies that Eq. 2 is the impulse response
of the muscle given strain rate as the input. We can express
the forcing function as a convolution of the impulse response
with the strain rate,

Jasa(t) = g(t) # v(t) 2 / Tyt —ndr @

where g(t) = —e™ "3t + e FTst,

In the Laplace domain, convolution is a straightforward
multiplication rather than an integration, i.e.
Fisa(s) = G(s)V(s). Taking the Laplace transform of the
response function g(t) as defined in Eq. 2, we get the transfer
function G(s) which transforms the velocity feedback input
to the dSA forcing output:

L(g(t)) = G(s) = 2+ r:(gl(l—&-nl)iz + mg%

= 4
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where we’ve defined 3 parameters, o, oo, and ag for con-

venience. The dSA phenomenon, therefore, is qualitatively

similar to a second-order low-pass filter on the velocity, fed
back to the muscle as a force command.

B. The asynchronous spring-wing system equations

The Laplace representation of dSA is useful in that it
allows us to express the dynamics of asynchronous actuation



as an ODE. In the Laplace domain, the force output is the
product of the transfer function and the velocity input:

aq

Fasa®) = | o

} V(s) = Gasa(s)V(s) (5)
We can distribute the denominator of G(s) and take the
inverse Laplace transform:

52FdSA(3) + OlQSFdsA(S) + angSA(s) = a1V(s) (6)
£-1 = fasa +azfasa +azfasa = arv (7N

To connect the dSA actuation dynamics to the inertial,
elastic, and aerodynamic elements of the flight system, we
use the nonlinear “spring-wing” equation that is commonly
used [32], [34], [35] to describe flapping systems with
internal elasticity. The equations of motion in terms of inertia
1, stiffness k, drag torque term I', and the applied torque
Tapplied:

IG + kO + F‘elg = Tapplied ®)

The asynchronous muscle dynamics dictate the torque ap-
plied to the system and are scaled by a gain coefficient, p
(units: Nm rad '), so we may write the combined equations
of motion:

mb + k6O + F|9|9 — pfasa =0
fasa + asfasa + asfasa — a0 =0 )

Solving these equations simultaneously gives the trajectory
of the flapping wing, 6(t). The prevalence of asynchronous
insects that employ dSA actuation suggests that this system
can produce stable limit cycle oscillations from the balance
between quadratic aerodynamic damping and strain-rate de-
pendent muscle actuation. However, this is not guaranteed.
To evaluate whether dSA is suitable for actuating a robot
we must study the dynamical behaviors of this system. For
example, there may exist combinations of feedback and me-
chanical parameters that do not result in oscillations, or other
regimes in which more exotic dynamical behaviors appear
(exponential growth, chaos, etc.) that should be avoided
in a robot implementation. It is necessary to identify the
conditions under which a stable limit cycle can be expected
to form.

C. Asynchronous wingbeats result from a linear instability

The stationary state, [0,0, fisa, fasa] = 0, is a fixed point
of the asynchronous dynamical system (Eq. 9). We now seek
to understand if this fixed point is stable or unstable. We ask
the following question: if there is a small perturbation to the
closed-loop system with dSA feedback, will oscillations tend
to decay back to the origin or will they grow?

The system described in Eqgs. 9 is nonlinear and so we can
define a new state vector o = [6, 0, fasa, deA]

(5'1 = 02
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Fig. 3. Plots of amplitude and frequency of dSA limit-cycle oscillations
as a function of r3/wy, and p/I. Red lines indicate calculated stability
boundaries separating stable limit-cycle oscillations (large g, r3) from
stationary behavior (small p, r3) from equation 14. Stars indicate the x-
and y-intercepts of the stability curve, (Eq.16). a) Amplitude of oscillation
grows with increasing p and non-monotonically varies with r3. Inset shows
the real component of the eigenvalue of the linearized system which shows
qualitative agreement with the non-linear system. b) Frequency decreases
with increasing both p and 73.

We next linearize about the point o = 0, constructing the
Jacobian and the linear dynamics about the stationary state:

0 1 0 0
k

. -2 0 L0

=1 0 o0 0 1 a an
0 a1 —ag —ay

The growth or decay of perturbations from the stationary
state are determined by the eigenvalues of the Jacobian. The
characteristic equation for the linear system is

k k k
>\4+Ol2)\3+(f+043))\2+(f042—ﬁal))\ﬁ-fﬂg =0 (12)
m m m m

with eigenvalues \; = a; + iw;.

The sign of the real part of the largest eigenvalue dictates
whether a perturbation away from the stationary point will
tend to decay (stable) or grow (unstable). Understanding the
conditions on the stability boundary will enable us to choose
relevant feedback parameters to induce oscillations.

We can determine the boundary between decaying and
growing solutions by setting the real part of the eigenvalue



to zero, e.g. A = iw, where w is the frequency of oscillation.
Plugging in for A and separating the real and imaginary parts,
we get two equations:

Real :  w*— (2 +a3)w?+ 403 =0
(13)
Imag : ?ag — oy — asw? =0

We are specifically interested in how the parameters, p and
r3, influence the onset of asynchronous oscillations due to the
instability of the stationary point. Recall the definitions of the
coefficients, a; = 73(1 — k), ag = r3(1 + k), az = Kkr3.
We also define w? = k/I as the natural frequency of the
system and = p/I.

The first equation is quadratic in w?. Solving, we get two
solutions: w? = kr? and w? = w?2. Plugging each into the
second equation, we get a pair of equations:

1
8 W2 — )

@ —j= (14)

11—k

©—=>p=0 (15)

Eq. 15 gives the trivial conditions (zero feedback gain = no
oscillations), but Eq. 14 defines a relationship between the
strength of the dSA feedback and its rate parameter, plotted
in Fig. 3 (red line). The two equations define 4 quadrants
in the rs — p plane where perturbations tend to either grow
or decay. In the current work, we’ll focus just on the two
regions that exist for p > 0.

D. Emergence and properties of dSA limit cycles

In the previous section we demonstrated that for certain
dSA parameters the stationary state is unstable and oscil-
lations will grow. In a system with quadratic damping, a
stable limit cycle may form where the system oscillates
such that the energy input from the muscle over one period
exactly balances the energy dissipated by the environment. In
order to control flapping oscillations, we need to understand
how the amplitude and frequency of oscillations vary with
the system parameters. The nonlinear aerodynamic damping
presents challenges to deriving analytical solutions of the
system. However, we can study the behavior of the system
via numerical simulation.

We simulated the nonlinear equations of motion from Eq.
10 in Matlab (R2021a, Mathworks) using the ode45 solver.
We chose mechanical parameters (k, I, I") that matched those
of a robophysical experimental system that we will use
section III. We selected 0.8 as an arbitrary value for x and
the results are independent of this choice. We computed
intercepts of Eq. 14,

1+k
e
and defined ranges of i and r3 from O to 3 times the
intercept value. We ran simulations at each configuration and
computed the amplitude and frequency of oscillations, which
were typically sinusoidal. The results are shown in Fig. 3.

Our simulations confirm that the stability boundary in Eq.
14 does divide the plane into oscillatory and non-oscillatory

(16)
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Fig. 4. a) Diagram of the dynamically-scaled robotic model and control
scheme. b) A photo of the system

regions. Additionally, there is a clear trend that shows that
increasing /i leads to an increase in flapping amplitude and
a decrease in flapping frequency. The change in frequency
is predicted by linear eigenvalue analysis (Fig. 3b, inset).
However, when amplitudes get very high (high /i), nonlinear
drag effects become more significant, causing the lines of
constant frequency to deviate from the linear predictions.
This discrepancy underlines the importance of considering
the inherent nonlinearity of the system.

It is important to note that many of the solutions shown
in Fig. 3 are simply impractical. At high-/i, low r3, we
see oscillation amplitudes well above 360 degrees, whereas
a hinge on a flapping robot would be expected to have a
maximum angle of only ~90 degrees. This limitation, in
addition to limits on the torque and max displacement of a
potential actuator, means that in practice, dSA feedback will
need to have a relatively small fi.

III. IMPLEMENTATION IN A SCALED ROBOTIC MODEL

In this section we describe experiments on a dynamically-
scaled robotic flapping wing, which we call a robophysical
system since it employs robotics and feedback coupled to
physical and environmental forces. The robophysical system
has well characterized mechanical parameters and is easily
modified thanks to its modular design, enabling a range of
tests that would be more difficult at a smaller scale.

A. Design of an asynchronous robotic spring-wing

The robophysical system we use in this study (Fig. 4) was
adapted from a similar system described in [32]. It consists of
an elastic element (a molded silicone torsion spring), a main
shaft supported by a thrust bearing and radial air bearings,
an optical rotary encoder (4096 CPR, US Digital), and a
rigid, fixed-pitch acrylic wing in water. The inertia can be
changed by fixing one of a set of inertia plates to the main
shaft. Data collection and control of the system is done via
a DAQ (PCIe 6323, NI) and Simulink Desktop Real-Time
(SLDRT) (Mathworks), which enables hardware-in-the-loop
control at a rate of 1000 samples/s.

The key feature of the asynchronous robotic model is the
method of driving the system. We use a brushless DC motor
(D6374 150KV, ODrive Robotics) and a motor driver to
capable of closed-loop torque control at 10 kHz. The angular
position of the wing is used as the input to a SLDRT model
that implements the dSA transfer function (Eq. 4), multiplies
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Fig. 5.
and r3 constant (k = 416Nm rad—1, T = 1.96 x 10_3kg m2, r3 =
35s~1, and k = 0.5). a) Three representative plots in the time domain: no
oscillation (u too low), a borderline case, and stable oscillations (p large
enough). b) The amplitude of oscillation increases as p increases, and the
frequency decreases slightly.

Results of increasing p while keeping the mechanical parameters

the output by the strength, p, and sends a torque command
to the motor via USB, as shown in Fig. 4a. The direct torque
control method eliminates the need to explicitly integrate the
motor dynamics into the asynchronous ODE.

B. Controlling amplitude and frequency in a real system

We tested the effect of changing the value of p in
the robotic model while holding r3 constant. The system
parameters are as follows: Stiffness k& = 0.416 Nm rad—!,
Inertia I = 1.96 x 1073 kg m?, r3 = 355! = 2.4w,, and
x = 0.5. The value of r3 places this configuration on the side
of the stability boundary that should mean that it oscillates
as long as 1 > 0. However, when we choose a small value
for p, we find that an initial perturbation actually tends to
decay back to zero (Fig. 5a-i). In this case, the dSA feedback
is not strong enough to overcome the effects of friction in
the bearings. We don’t model friction in our simulations,
but we can see that as 4 — 0 in Fig. 3a, the oscillation
amplitude approaches zero. When friction is present in the
system, arbitrarily small amplitudes are not possible, so the
oscillation decays. Increasing p leads to a "borderline” case
where the system oscillates for a few periods before decaying
again (Fig. 5a-ii). When p finally crosses the threshold, stable
oscillations result from an initial perturbation. We observe a
roughly linear relationship between p and amplitude, as well
as a subtle decrease in oscillation frequency with increasing
v (Fig. 5, b and c)

C. Exemplary behaviors of dSA flapping wing systems

Beyond the control of flapping amplitude and frequency, we
are able to examine novel behaviors of dSA flapping wing
systems via the robophysical model. We observed that the
asynchronous system was able to naturally adapt to changes
in its mechanical properties. Additionally, the system features
an extremely fast response to collisions with environmental
obstacles, reducing the potential for serious damage to the
wings or wing transmission.

1) Adaptation to changing mechanical parameters: Fig-
ure 6a shows the results of an experiment where additional
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Fig. 6. The asynchronous spring-wing adapts to changes in its mechanical
system properties. a) When extra mass is added to the inertia plate on
the large-scale robot model, the system transitions to a new amplitude and
frequency. b) When we varied the inertia over a large range, we saw that
increasing inertia decreases the frequency and increases the amplitude of
the wingbeat

mass is added to an inertia plate during an experiment. One
might expect that the addition of extra inertia would cause
the amplitude to decrease, as the motor now needs to move
more mass. However, we see that as soon as the inertia
of the system changes at ¢ = t*, the asynchronous flapper
adjusts to the new loads on the system, actually increasing
in amplitude and decreasing frequency. It adapts to the new
system properties. Keeping the same values of r3 and p,
we measured amplitude and frequency of oscillation for 4
different inertias. Figure 6b shows that this trend continues
for higher inertias, suggesting that the product of amplitude
and frequency remains roughly constant.

A robot with an adaptive control scheme like this is
able to respond to changes to its mechanical properties
automatically. This qualitatively has similarity to the adaptive
oscillators explored for legged-locomotion, in which robots
adjust gait and frequency when loads are added [36]. Damage
to a wing or accumulation of debris may cause changes in
wing inertia that would seriously impact the performance of
a synchronously driven robot whose frequency is dictated by
the resonance curve of the robot [37]. An asynchronously-
driven robot, on the other hand, would simply adapt to a new
frequency and amplitude that would still enable it to fly. As
FWMAVs move from safe laboratory conditions to the more
unpredictable world-at-large, adaptation to new situations
will be ever more critical.

2) Fast response to collisions with the environment:
Another inevitable consequence of operating in unstructured
environments is collisions. The brittle actuator materials and
delicate microstructures that make up typical FWMAVs make
it all the more important to avoid or mediate damage from
collisions. We wanted to investigate the response of the
asynchronous system to a collision with a rigid object in
the environment.

We fixed an inertia plate to the robotic model that included
vertical posts and set the system to oscillate. At ¢ = t*,
we interrupted the motion of the system by causing a post
to collide with an obstacle. We observed that the system
stopped almost immediately, well within a single period (Fig.
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Fig. 7. When the system collides with an obstacle at ¢ = t*, it naturally
stops thanks to the dSA feedback law. It easily starts up again later as any
small perturbation grows back to the original limit cycle

7). Very shortly after the angular velocity is reduced to zero,
the dSA feedback also goes to zero, causing the actuator to
stop driving the wing.

In the synchronous forcing case, represented by the light-
colored trace in Fig. 7, the actuator is oblivious to the
collision and continues to apply torque to the wing after it
has already stopped, potentially causing damage to the wing
structure. The low-level feedback inherent to asynchronous
actuation enables the system to respond immediately, reduc-
ing the potential for damage. In addition, as soon as the
system is perturbed again, after it is clear of the obstacle,
it resumes flapping at the same amplitude and frequency.
The asynchronous system naturally avoids damage and does
it within a single oscillation period with no need for an
explicit command to stop actuation. It may serve as a sort
of distributed control, offloading some need for the flight
controller to respond to environmental disturbances.

IV. INSECT-SCALE ASYNCHRONOUS FLAPPING WING

As a proof-of-concept demonstration, we implemented dSA
feedback on an insect-scale robotic wing. The wing appa-
ratus, consisting of a thin polymer wing (15mm x Smm x
0.1mm) supported by a carbon fiber frame, a PZT bimorph
bending actuator, and a transmission, is based on the design
from [1] (see Fig. 8a). Here, we used just a single wing,
supported by acrylic brackets instead of a carbon fiber
airframe. We aligned a fiber optic displacement sensor (D21,
Philtec) with the tip of the actuator to track the actuator
displacement. Oscillations were induced by an aerodynamic
perturbation provided by a toy vortex ring gun (Zero Blaster,
zerotoys.com). We recorded high speed video of the system
from the top down as the vortex crossed the wing. Frames
from the video can be seen in Fig. 8b.

The output from the displacement sensor was fed into an
NI DAQ (PCIe 6343) and used as input the same SLDRT
model that implemented the dSA feedback law described in
previous Section III. Typically, PZT bimorph actuators are
driven by providing 3 voltage signals: a high-voltage bias
(250V) on one side of the bimorph, a control signal (0V-
250V) in the middle, and ground on the other side. Bending
in the actuator is driven by the electrical potential between
the signal and the two sides of the bimorph. To close the loop
via dSA feedback, we took the derivative of the displacement
to get velocity and fed the velocity into the dSA transfer
function 4 with r3 = 225 Hz (~ 3w,). The output was
converted to voltage and fed through an amplifier to the PZT
control signal. As with the large-scale robotic model, we
slowly increased p until stable oscillations were observed.
Fig. 8 shows the result of two tests: one with y too small to
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Fig. 8. a) Robobee wing experiment diagram, side and top views and

photo of the setup. b) High-speed video stills before, during, and after vortex
perturbation. ¢) Wingbeat dynamics when g value is too low (top) and when
w is increased above the oscillation threshold (bottom). Numbered regions
correspond to the images in b.

overcome friction, and one with a large enough u to induce
oscillations. Larger values of p may have provided larger
amplitudes, but we used this minimum g value in our testing
to avoid overloading the actuator and the robot.

V. CONCLUSION & FUTURE WORK

In this paper we derive and study the first dynamical
system representation of asynchronous wingbeat actuation
in flapping wing robots and insects. The dSA feedback
control law that we have described here is a novel method
of achieving flapping in robots. Asynchronous actuation in
current FWMAVs is simple to implement and requires only
1) a state estimate via strain gauge, encoder, gyroscope, or
other sensor and 2) knowledge of the internal dynamics
of the actuator. The method can be applied to a wide
range of actuators using relatively simple analog hardware or
simple digital logic. The resulting system naturally oscillates
powered and can be controlled by adjusting the feedback
parameters OR by changing the mechanical properties (e.g.
wing inertia) of the robot.

While our implementation of asynchronous actuation re-
lied on actuators, sensors, and a feedback loop, the dSA
response of insect flight muscle is “material” property of
the muscle. Thus asynchronous wingbeats emerge from the
lowest level of mechanical feedback within asynchronous
insects. Future work to engineer such low-level feedback
properties into active materials and circuits will be of great
interest for future FWMAVSs.
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