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Lateral contact yields longitudinal cohesion in active undulatory systems
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Many animals and robots move using undulatory motion of their bodies. When the bodies are in close proxim-
ity undulatory motion can lead to novel collective behavior such as gait synchronization, spatial reconfiguration,
and clustering. Here we study the role of contact interactions between model undulatory swimmers: three-link
robots in experiment and multilink swimmers in simulation. The undulatory gait of each swimmer is generated
through a time-dependent sinusoidal-like waveform which has a fixed phase offset, φ. By varying the phase
relationship between neighboring swimmers we seek to study how contact forces and planar configurations are
governed by the phase difference between neighboring swimmers. We find that undulatory actuation in close
proximity drives neighboring swimmers into planar equilibrium configurations that depend on the actuation
phase difference. We propose a model for stable planar configurations of nearest-neighbor undulatory swimmers
which we call the gait compatibility condition, which is the set of planar and phase configurations in which
no collisions occur. Robotic experiments with two, three, and four swimmers exhibit good agreement with
the compatibility model. To study the contact forces and the time-averaged equilibrium between undulatory
systems we perform simulations. To probe the interaction potential between undulatory swimmers we apply
a small force to each swimmer longitudinally to separate them from the compatible configuration and we
measure their steady-state displacement. These studies reveal that undulatory swimmers in close proximity
exhibit attractive longitudinal interaction forces that drive the swimmers from incompatible to compatible
configurations. This system of undulatory swimmers provides new insight into active-matter systems which move
through body undulation. In addition to the importance of velocity and orientation coherence in active-matter
swarms, we demonstrate that undulatory phase coherence is also important for generating stable, cohesive group
configurations.

DOI: 10.1103/PhysRevE.105.054604

I. INTRODUCTION

The field of active matter has been inspired by the collec-
tive behavior of biological systems [1]. The principles of these
systems are that individuals move through self-propulsion
and that interactions occur through mechanical forces often
mediated through hydrodynamic or contact forces [2]. Ani-
mal groups across scales from bacteria [3,4], insects [5,6],
fish [7,8], and birds [9,10] exhibit coordinated movement
patterns such as group flocking and swarming. In groups of
larger animals such as birds and fish the collective move-
ments are generated through visual sensory cues [11,12] and
hydrodynamic interactions between the individuals [13–16].
However, smaller scale systems such as swimming bacteria,
sperm, and worms, that often swim in higher group densities
may experience repulsive contact forces in addition to fluid
interactions [17–19]. The role of contact interactions has been
extensively studied in simple models of active matter systems
such as self-propelled rods and particles [20–23]. However,
when locomotion is governed by an undulatory motion the
interactions between these self-propelled systems may be in-
fluenced by phase differences in undulatory gait. In this work
we study how the relationship between spatial configuration
and undulatory gait parameters influence the collective behav-
ior of active undulatory systems.

Before introducing active undulatory systems we briefly
review the physical phenomena of active-matter and in par-
ticular of self-propelled particles. A self-propelled particle is
an agent that possesses an internal energy reservoir which can
produce propulsion (see Ref. [24] for an extensive review).
Groups of these particles can then interact through hydrody-
namic, short- and long-range potential, or contact forces and
display collective behavior such as flocking, swarming, and
incoherent motion. Interactions through contact have been ex-
tensively studied in these systems and often lead to positional
and velocity alignment [22,25,26]. In most examinations of
the collective physics of self-propelled particles the agents
themselves are propelled through constant, time-invariant
propulsion. Steering forces may vary with the environment
[27–29] or the other agents’ positions (as in the classic Vicsek
model [30]), but still typically the propulsion is slowly mod-
ulated or constant. Furthermore, the “body” shape of these
particles are typically simple spheres, rods, or ellipsoids that
have no articulating components (i.e., are a single rigid body).
This simplification while useful for analysis and simulation is
a drastic reduction of the complexity seen in living systems
that often locomote through articulated body and appendage
motion.

In this work we define an active undulatory system as
consisting of individuals that move through body (or discrete
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FIG. 1. Motivation and overview of gait compatibility among
undulatory swimmers. (a) Large groups of swimmers experience
contact interactions. (b) Contact interactions among pairs of un-
dulatory swimmers confined to a lateral distance d require planar
(�x, �y) reconfiguration when there is a gait phase difference �φ.

joint) bending in which bending is propagated along the length
of the body. Undulatory locomotion is a common method of
movement in biological systems across scales from sperm [31]
to snakes [32–34]. Undulatory body bending can be three-
dimensional with out-of-plane body movement such as snake
sidewinding [35], however, in this work we consider planar
undulatory movement. A representative undulatory gait is a
simple traveling wave of body bending, y(x, t ) = A sin( 2πx

λ
+

ωt + φ) that propagates from head to tail. The undulatory
movement occurs through movement in the lateral direction,
y, that propagates at wave speed λω and with wavelength λ

and frequency ω. However, when considering the undulatory
motion of more than one individual, an additional phase pa-
rameter φ becomes necessary to describe the relative phases
between the two systems. When swimmers have identical
phases they will be in synchrony, however, when phases differ
the traveling wave propagation will spatiotemporally differ
which might result in forceful interactions between individ-
uals.

The simplest system that can exhibit undulatory, traveling-
wave motion is the “three-link swimmer” (Fig. 1). This system
consists of three rigid links separated by two actively con-
trolled joints. The three-link swimmer was first introduced
by Purcell in his study of low Reynolds number locomotion
[36] and later analyzed in Becker et al. in which the full
dynamical equations were introduced [37]. In the many years
since its introduction the three-link swimmer has been studied
extensively as a model of undulatory locomotion on frictional
surfaces [38,39], granular material [40], and within fluids
[41,42]. Undulatory locomotion in a three-link swimmer is

generated through oscillatory motion of the two joints, whose
angles [β1, β2] define a “shape-space” of the system [43]. A
gait is defined as a closed trajectory through this shape-space
over a period of time T such that βi(t ) = βi(t + T ).

Active undulatory systems have been studied in the context
of agent-environment interactions such as collision with envi-
ronmental features. Undulatory robots interacting with posts
display scattering phenomena that highlight the importance of
active collisions between active systems and the environment
[44]. These authors define active collisions as mechanical
contact in which propulsive forces within the robot or animal
create persistent contacts with environmental features. These
active collisions yield relationships between the incoming and
outgoing trajectory, dependent upon the undulatory phase and
collision position. Similarly microscale swimming bacteria
that locomote through reciprocal flagellar movement interact
with patterned and flat walls through predictable scattering
[45]. The contact interactions between flagella and the wall
redirect the swimmers and the gait-phase at contact governs
this scattering behavior. At a larger scale swimming nema-
todes (C. elegans) make repeated body contact with obstacles
when swimming through wet granular material [46] and ar-
rays of fixed pillars [47]. The influence of these obstructions
causes the animals to change gait and to generate slower
forward velocity. This previous work highlights how undula-
tory movement is influenced and affected by interactions with
the external environment. In particular the importance of gait
phase at collision suggests that the phase differences between
two undulatory swimmers will play an important role in the
collective physics of these systems.

This work is inspired by recent observations of collec-
tive undulatory swimming in nematodes [48], vinegar worms
[49,50], and sperm. These undulatory swimmers often form
clusters of high-density swimmers [17,51], and the close prox-
imity between individuals can generate forceful interactions
through hydrodynamics and contact. Hydrodynamic interac-
tions between microscale undulatory swimmers have been
well studied (see Ref. [18] for an extensive review). Interac-
tions through a fluid can lead to long- and short-range forces
that drive spatial clustering [19,52] and synchronization phe-
nomena [53–57]. When organisms increase in size, the role of
hydrodynamic interactions is diminished, yet individuals may
still interact through contact. Recent experiments with vinegar
worms [49,50] and nematodes [48] demonstrate that contact
interactions can generate synchronization of the undulatory
gait. More broadly, contact interactions between undulatory
systems can generate coherent and incoherent movement de-
pendent on density, gait, and actuation parameters [58–60].

In the following work we study the planar dynamics of
undulatory swimmers in close proximity to determine the
role of gait phase difference. In experiments we study the
relative planar positioning of robot “swimmers” in which the
individual swimmers do not “swim” but instead rest on a
frictional surface. In simulations we studied swimmer groups
that did swim through viscous forces acting on them. In both
robot experiments and numerical simulation we find that as
the phase difference between swimmers increases there is an
increasing interaction “force” along the longitudinal direction
that pushes swimmers to a stable planar configuration. This
stable configuration is determined by the planar arrangement
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FIG. 2. Overview of three-link robots. (a) Geometry of the three-link system. Links are length, l = 17 cm, height, h = 5 cm, and width,
w = 2.5 cm. (b) The joint angles β1 and β2 are controlled through position-commanded servos. (c) We studied groups of robots in a narrow
channel of variable width d .

and phase difference and is called the compatibility condition
for undulatory motion. In the subsequent work we demon-
strate that compatibility governs the packing arrangements of
undulatory swimmers, and when swimmers are pushed out
of compatibility their contact interactions attempt to drive
them back to compatibility. Ultimately this work highlights
the importance of contact interactions and critically gait phase
on the collective behavior of active undulatory systems.

This paper is organized through a series of robophys-
ical experiments and numerical simulation. In Sec. II we
provide details for the robot experiments and numerical
simulation. The first observations are made with pairs of
undulatory robots in Sec. III A where we demonstrate that
phase differences between undulatory robots lead to longi-
tudinal repositioning of the robots. The details of the phase
and spatial dynamics depend on actuation waveform which is
studied in experiment and simulation. From these experiments
we develop a model in Sec. III B of spatial configurations
that depend on gait which we call gait compatibility. The
gait compatibility model is based on an assumption of a
smooth, sinusoidal body shape that differs from the three-link
robots studied in experiment and simulation and thus we next
study the role of body shape on compatibility (Sec. III C).
We next study groups of three and four robots to observe
spatial dynamics in these collectives (Sec. III D). The robot
group experiments and the compatibility model suggest a
packing density limitation with groups of swimmers at dif-
ferent phases which is investigated in Sec. III E. Lastly, in
numerical simulation we observe the basins of attraction of
compatible configurations (Sec. III F) and we measure the
“potential energy” of these stable configurations (Sec. III G).
This combination of robot experiments and numerical simula-
tion reveal that undulatory phase differences have a significant
influence on spatial configurations within undulatory active
systems.

II. METHODS

We performed robot experiments and numerical sim-
ulations to model the collective behavior of undulatory
“swimmers” that have rigid links coupled through rotational
joints. We studied the behavior of two and up to ten robots
through experiment and simulation (Fig. 2).

A. Robotics experiments

The robot experiment setup was designed to observe the
collision interactions between two to four swimmers. Each
swimmer in an experiment was comprised of a three-link
robot (Fig. 2). Each robot had a three-dimensional (3D)
printed body connected with two Dynamixel AX-12A servo
motors [Fig. 2(a)] with a total length, L = 51 cm. All servo
motors were programed to oscillate with a sine function of
constant amplitude and constant frequency (0.5 Hz). The
servo motors were commanded to follow an angular trajectory
that was controlled with a proportional controller and a maxi-
mum torque of 1.5 N m. To produce an undulatory motion, we
generated a traveling wave along the length of the body with
angular position of the ith joint on the jth robot as

β
j
i = β0 sin

(
2πξ i

N
− 2π f t + φ j

)
, (1)

where i = {1, 2} denotes the joint number and N = 3 for the
three links of the robot [Fig. 2(b)]. j = {1, 2, 3, . . .} denotes
different robots. The ratio ξ = L

λ
is the number of wavelengths

along the body. In our experiments we varied ξ = [0, 3
4 , 1, 3

2 ].
The angular amplitude, β0, was held constant at β0 = 45◦ in
experiment and β0 = 40◦ in simulation. We conducted a set of
sensitivity analyses of the actuation parameters such as motor
angular amplitude β0, motor controller proportional gain KP,
and swimmer body length L, in simulation. The results were
consistent across a large variation of these parameter values.
The phase offset φ j is constant for each robot, but could differ
between robots and represents the overall actuation phase of
the robot. Thus the phase difference between robots is repre-
sented by �φ = φa − φb.

The goal of this paper is to study the spatial dynamics
of undulatory swimmer groups as they swim in the same
direction [Fig. 1(a)]. We emulated the effect of being within a
group by confining the robots to a narrow channel so that they
are forced to interact with each other. When the confining wall
is not in place the robots will push each other away until they
no longer contact and interact. The confined environment was
created using a fixed channel measuring (slightly more than)
one meter long and 13 cm wide [Fig. 2(c)]. The robots rested
on a frictional surface and were confined laterally by two rigid
walls whose separation distance d was varied depending on
the number of robots in the experiment. When robot pairs or
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groups are in the channel they are able to move laterally (�y)
and longitudinally (�x) with respect to each other through
contact. �x and �y were measured as the planar distance
between the middle of the central links between each robot.
Because of the constraint of the narrow channel, the rotation
of robots was ignored. Each experiment consisted of placing
the robots laterally in contact (�y = 1.5 cm) and at the same
longitudinal position (�x = 0). Video recording of the robot
movements was captured from an overhead view (see Supple-
mental Material [61]). A meter stick was aligned along the
channel’s length to measure the robot locations measured at
each robot’s center. At the start of each experiment, the two
robots were set to their elongated shape, with joint angles
β

j
i = 0.

Through video tracking we measured the center position
of all robots in the experiment. We compute the center-
to-center spacing between nearest neighbors to determine
the lateral and longitudinal spatial shifts that occur during
undulatory movement. The motors were commanded to gen-
erate an undulatory gait for 15 oscillations (30 seconds).
In robot pairs this process was repeated for the varying
phase shift in the two robot experiments, �φ, at values
[−1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1]π .
Phase shift in three robot experiments was set at values
[−1, −0.5, 0, 0.5, 1]π . For the four robot tests the phase
shifts were selected at random. We additionally performed this
measurement for varying wavelengths.

The robots did not have wheels or any other frictional
anisotropy and thus they do not “locomote” along a partic-
ular direction but rather undergo continuous traveling-wave
oscillation while approximately remaining in the same spatial
location. While the robots do not swim in experiment, our
focus in this paper is the influence of contact interactions on
the relative spatial positioning between undulatory swimmers.
In simulations we implemented viscous drag forces on the
swimmers to make them swim forward emulating being in
a low Reynolds number environment. We found good agree-
ment between the experiment and simulation. Thus, despite
the robots not swimming through a fluid we believe their
contact interactions are commensurate with those of the swim-
ming systems that inspired this work.

B. Simulation details

We performed simulations of undulatory swimmer groups
to compare with experiment and to extend analysis of this
system beyond what is experimentally feasible. The sys-
tem was studied in the Project CHRONO multibody physics
simulation environment [62]. In simulation the swimmers in-
teracted through contact normal forces. Contact interactions
in CHRONO are modeled using a discrete element method
(DEM) framework. CHRONO handles two forms of DEM, one
in which only “rigid” interactions occur which are handled
through complementarity conditions that enforce nonpenetra-
tion between bodies (DEM-C). The second method, DEM-P,
models “soft” interactions and uses a penalty-based method
modeling contacts as overlapping elastic bodies with elastic
interactions. In our simulations we use the DEM-C method
to handle contacts. The DEM-C and DEM-P methods have
been compared in Pazouki et al. [63] in addition to validation

comparisons. Details of the DEM-C method in CHRONO are
described in the Appendix and can be found in Tasora et al.
[62], Pazouki et al. [63], and Heyn et al. [64]. In CHRONO the
swimmer links are modeled by rectangular collision shapes
for collision detection. We set the tangential friction to zero
and normal coefficient of restitution to zero in the simulations.

Viscous drag forces were applied to swimmer links to
emulate the swimmers moving in a low Reynolds number
environment [65]. The drag forces applied to the moving
swimmer links are provided in the Appendix. We modeled
the position-controlled servos in simulation through torque
actuation of the joints under a proportional position control
(P gain = 0.15 N m/rad) with torque saturation to model
the maximum torque capabilities of the motors. The torque
saturation in simulation was set to the same saturation of the
experiment motors, 1.5 N m. The motors were commanded to
follow the trajectories defined in Eq. (1). We primarily studied
groups of three-link swimmers consistent with experiment.
However, we did perform simulations with five-link, seven-
link, and nine-link swimmers to understand how link number
influenced spatial dynamics.

III. RESULTS AND DISCUSSION

A. Spatial reconfiguration between robot pairs

We begin our investigation by studying pairs of robots
in experiment and simulation. We set the channel width to
d = 13 cm to constrain the robots laterally and we perform
experiments with a phase difference between the two robots
of �φ = φ1 − φ2 over the range of �φ ∈ [−π, π ]. We ob-
serve that robots with nonzero �φ experience a longitudinal
displacement �x driven by the contact interactions [Figs. 3(a)
and 3(b)]. The longitudinal separation �x was measured by
averaging the position difference of the robot centers in the
last five periods where the robots have reached a steady-state
value for longitudinal spacing.

In the ξ = 1 experiments a phase difference between the
two robots resulted in a change in the steady-state longi-
tudinal separation with an approximately linear relationship
[Fig. 3(b)]. The slope of the �x

λ
versus �φ relationship was

the same over different number of traveling waves along the
body between ξ = [ 3

4 , 1, 3
2 ] [Figs. 3(b) and 3(c)]. However,

when ξ was relatively large or small we observed that devia-
tion from this linear relationship [Fig. 3(c), top and bottom
panels]. Numerical simulations of two swimmers in a vis-
cous fluid with identical geometries agreed well with the
experiment.

B. A gait compatibility model for undulatory collectives

We hypothesize that undulatory swimmers actuated
through a sinusoidal traveling wave adjust their planar po-
sitioning to minimize contact interactions. We now derive
a geometric relationship between phase and planar configu-
ration based on the assumption of minimizing contact. We
assume that the undulating motion of the three-link swimmer
is represented by a sinusoidal traveling wave of amplitude A
and wavelength λ, and that there is no lateral separation be-
tween the swimmers (�y = 0; we relax this assumption later).
In the continuum limit the lateral position of each swimmer is
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FIG. 3. Gait compatibility in undulatory swimmer pairs. (a) Image of two undulatory robot swimmers in experiment and illustration of
longitudinal motion from contact interactions. Illustrations are traced from experiment images. (b) Steady-state longitudinal separation versus
phase difference between robot pairs with ξ = 1. Black diamonds are experimental results; green dots are simulation results. Solid lines are
compatibility predictions from equation (2). (c) The right column shows the simulation results with different ξ at three ranges. Experiment
results with ξ = [0, 3

4 , 3
2 ] are included accordingly. The solid lines are the compatibility prediction.

thus described by

y1(x, t ) = A sin
(

2π
x

λ
+ ωt

)
,

y2(x, t ) = A sin

(
2π

(x − �x)

λ
+ ωt + �φ

)
.

We propose that an equilibrium configuration of undula-
tory swimmers occurs when the two sinusoidal curves make
tangential contact (i.e., they are just close enough to touch
but do not intersect) which is shown in Fig. 4(a). For the
case of no lateral separation this imposes the single constraint,
y1(x, t ) = y2(x, t ), which can be satisfied by a relative longitu-
dinal displacement between the two swimmers by an amount

�x = λ

2π
�φ. (2)

We call this condition the compatibility condition for undula-
tory swimmers, inspired by recent experiments on swimming
worms which introduced the term gait compatibility [48].

We plot the gait compatibility prediction along with the
experiment and simulation measurements in Figs. 3(b) and
3(c) for the swimmer pairs. We find good agreement with
the model prediction when the number of wavelengths along
the body, ξ , is close to 1. However, as discussed in the previ-
ous section, the observations from experiment and simulation
differ for large and small ξ . The gait compatibility model sug-
gests that oscillatory swimmers with traveling-wave actuation
can swim in close proximity by adjustments to their longitu-
dinal position according to their phase difference. When ξ is
small but nonzero the swimmer length is substantially smaller
than the commanded wavelength. In this case deviations from
compatibility can occur because the contact location predicted
from sinusoidal curves is outside the range of the finite body
length of the swimmers. Thus, in theory they would interact
but in actuality with small ξ the interaction may not occur.

Alternatively, when ξ is large there are multiple wavelengths
along the swimmer. Using a finite number of links to rep-
resent multiple wavelengths will cause aliasing problems as
ξ increases which can cause poor sinusoidal curve tracking
and thus deviation from the compatibility condition. This sug-
gests the importance of traveling wave actuation which acts
to couple the lateral contact with longitudinal reconfiguration.
In effect the traveling wave actuation can force neighboring
swimmers along the longitudinal axis and drive them into
appropriate compatible states determined by phase and planar
spacing. We chose ξ = 1 in rest of the simulations demon-
strated in this work.

In deriving Eq. (2) we did not consider the influence of
a lateral separation distance �y on the allowable phase and
longitudinal offsets in which compatibility is achieved. How-
ever, in larger groups contact interactions may lead to density
fluctuations [66]. These density fluctuations may increase the
range of compatible �φ. Here we now derive the full compat-
ibility relationship that governs the allowable lateral, longitu-
dinal, and phase offsets for two compatible sinusoidal gaits.

We again assume two swimmers oscillating as spatial sinu-
soidal waves and we now include the longitudinal (�x), phase
(�φ), and lateral (�y) offsets:

y1(x, t ) = A sin

(
2π

x

λ
+ ωt

)
, (3)

y2(x, t ) = A sin

(
2π

(x − �x)

λ
+ ωt + �φ

)
+ �y. (4)

We assume that �y > 0 and thus swimmers that are in com-
patibility satisfy the equation y1(x, t ) � y2(x, t ) [Fig. 4(a)].
However, the boundaries of the compatible states occur when
two sinusoidal curves make tangential contact, which im-
poses the following two constraints: y1(x∗, t ) = y2(x∗, t ) and
y′

1(x∗, t ) = y′
2(x∗, t ), where prime denotes derivative with

respect to x, and x∗ is the contact location. Solving this
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FIG. 4. Contact compatibility criteria. (a) An overview of the phase-range (�φ) for compatible sinusoidal curves that are separated by
a �x and �y displacement. (b) The three-dimensional representation of the compatibility criteria represented by equation (5). The shaded
region above the solid blue curves are allowable configurations of gait compatibility. As the lateral separation distance increases (vertical axis,
�y
2A ) the range of compatible phases increases. (c) We show cross sections of the compatibility condition at three different lateral separations:
�y
2A = [0.2, 0.5, 0.9] from top to bottom. When �y

2A > 1 any combination of �φ and �x will be in compatibility. (d) Dots indicate the steady-
state longitudinal separation between two three-link swimmers in simulation with �φ = 0 as a function of wall width. The shaded area is
drawn to guide the eye and represents the growing compatibility region as lateral spacing is allowed to increase.

equation for the allowable phase offsets between neighboring
swimmers yields the following inequality relationship:

∣∣∣∣�φ − 2π

λ
�x

∣∣∣∣ � 2

∣∣∣∣arcsin

(
�y

2A

)∣∣∣∣. (5)

When �y = 0 this yields the previous equality in Eq. (2)
between �x and �φ. However, as �y increases there is a
growing range of allowable phase offsets in which two un-
dulatory swimmers can be in gait compatibility and not make
contact [Fig. 4(a)].

We show samples of the compatibility condition for vary-
ing ranges of lateral separation in Figs. 4(b) and 4(c), which
highlights the growing region of compatible phase and lon-
gitudinal separation as lateral distance increases. The gait
compatibility described here is somewhat similar to the
hydrodynamic synchronization of infinite two-dimensional
undulating sheets studied by Elfring and Lauga [67]. In that
work, the two sheets could freely displace longitudinally
through fluid force interactions and the authors demonstrated
that the sheets always converged to a relative in-phase or
antiphase configuration, depending on waveform. However,
there is a critical difference between this work and the case of
systems that interact through hydrodynamic forces. When two
swimmers are within gait compatibility, they do not contact
each other and thus are entirely decoupled. Small perturba-
tions to their position or phase, as long as they are not pushed
out of compatibility (and thus into contact), will persist,
indicating that the compatibility state is a neutrally stable con-
figuration. The interaction through contact means that there
is a discontinuity at the boundary between states where the
swimmers can interact, and states where they cannot interact.

To observe how the compatibility states change when
the swimmer separation distance is increased we performed
simulations for �φ = 0 with initial conditions ranging from

�x
λ

∈ [−1, 1]. We observed the final longitudinal separation
distance as a function of the initial conditions and confine-
ment. We normalize the confinement wall distance d by the
peak-to-peak oscillatory amplitude of the undulatory body
wave such that, when d

2A > 2, swimmers through initial con-
tact can push each other away and out of compatibility without
the wall confinement to bring them back into contact. In
theory, confinement distances d

2A < 1 are not possible because
the undulatory gait is obstructed. Increasing the confinement
wall distance increased the range of final longitudinal spac-
ing observed between two swimmers [Fig. 4(d)]. The central
compatibility state broadened indicating that swimmers could
compatibly move within a range of longitudinal separations
without contact. This is in accord with the predictions from
the compatibility model [Eq. (5)] in which nonzero lateral
separations (�y > 0) allow for a range of solutions to the
compatibility conditions. In practice there will always be lat-
eral spacing in active assemblies and this highlights a novel
aspect of contact-mediated interactions because once in the
compatible state the swimmers no longer can interact until
pushed back out of compatibility.

C. Increasing link number yields better
agreement with compatibility model

In both experiment and simulation we noticed that the
relative equilibrium of the longitudinal spacing �x formed
discrete clusters along the compatibility prediction line while
the prediction from a sinusoidal model is a linear phase-
displacement relationship. We hypothesized that this model
error was the result of the poor approximation of a sinu-
soidal shape by the three-link system. To determine how link
number influenced compatibility we studied five-, seven-, and
nine-link swimmer pairs in simulation and we found that
increasing the linkage number produced an increasingly linear
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FIG. 5. (a)–(d) Gait compatibility simulations of two swimmers with 3, 5, 7, or 9 links from left to right. As the link number increases the
longitudinal separation versus phase difference (red circles) show good agreement with the compatibility prediction (solid-lines). (e) Bottom
figures i–v show example configurations of two nine-link swimmers. Red circles represent swimmer pairs that reached the compatibility
condition (ii, iv), blue diamonds represent swimmer pairs that separate longitudinally with each other (i, v), green squares represent swimmer
pairs that are jammed with each other (iii).

compatibility relationship with increasing link number [Fig.
5]. The root mean square (rms) error of the simulation com-
patibility separation and the prediction [Eq. (2)] decreased
with increasing link number (rms error from compatibility
condition = [0.084, 0.063, 0.044, 0.039] for the [3,5,7,9] link
swimmers, respectively). The decreasing error with increas-
ing link number is a result of the discretized body-shape in
the three-link swimmers. The compatibility model assumes
a perfectly sinusoidal body shape, however, with only three
links the body undulation is not quite sinusoidal. However, as
we add more links this assumption becomes better so does the
gait compatibility model.

D. Experiments with three and four robot pairs

To examine how larger groups of undulatory swimmers
arrange spatially we performed experiments with groups of
three and four robots [Fig. 6(a)]. We widened the channel
to d = 19 and 22 cm for three- and four-robot experiments
and set ξ = 1. The robots are initialized with �x = 0 and
all joint angles set to zero. We begin undulatory actuation
for the robots and we monitor the lateral and longitudi-
nal displacement from an overhead camera [Fig. 6(a)]. We
observed the same overall behavior in robot groups as in
robot pairs: phase differences between neighboring robots re-
sulted in longitudinal repositioning until the group reached an
overall steady-state spatial configuration. Examining the near-
est neighbor �xi,i+1 versus �φi,i+1 we observe reasonably
good agreement with the compatibility predictions [Fig. 6(b)].
However, in both the three- and four-robot groups we do
observe relationships of �x

λ
vs �φ that lie in between the com-

patibility states [dashed line in Fig. 6(b)]. Visual inspection
of these experiments suggests that these data points represent
configurations that are effectively “stuck” in between the two
compatible configurations. In states lying along the dashed
line it requires an equidistant longitudinal shift in either the
positive or negative to reach compatibility, and thus the in-
teractions that drive the robots to compatibility may conflict
along this line and cause them to remain stuck. These dynam-
ics will be explored further in Sec. III F.

The variation in the longitudinal position was larger in the
group experiments compared with the robot pair experiments
suggesting potential collective effects present in the three-

0
-1

1

0

(a)

(b)

Robot 1

Robot 2

Robot 3

Robot 4

0.5

-0.5

-2π -π -π -2π

FIG. 6. Gait compatibility in larger robot groups. (a) Image of a
four-robot experiment at the beginning (top) and in the middle of the
experiment (bottom). (b) Steady-state longitudinal separation versus
phase difference groups experiments with three (red squares) and
four robots (blue circles). Solid lines are compatibility predictions
from Eq. (2).
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FIG. 7. Lateral density is influenced by phase variance in undulatory groups. (a) A representation of a group of undulatory swimmers
separated laterally (the vertical direction) in tangent contact with phase variation. (b) A heatmap of time-averaged absolute value of joint error
induced through collisions within a swimmer group for varying normalized lateral density, ρ̃ (y axis) and the range of phase variation (x axis).
Blue circles indicate the measured joint error threshold below which contact typically does not occur in the group from simulations. Error
bars represent the standard deviation of the mean taken over five periods. (c) A heatmap of time-averaged magnitude of contact forces induced
through collisions within a swimmer group. Blue circles indicate the baseline contact force threshold between a swimmer and the wall. Error
bars represent the standard deviation of the mean taken over five-periods. In both panels (b) and (c): The red curve is a Monte Carlo estimate
based on the compatibility equation. The dashed green curve is the calculation from the math model (10).

and four-robot experiments that were not captured in the pair
experiments. The principal influence of this variance from the
compatibility prediction is the larger lateral spacing afforded
to the larger robot groups. As the swimmers push each other
they may arrange into high- and low-density configurations
leaving lateral space for some robots, which thus increases the
range of compatible phases allowable [Eq. (5)]. We explore
how density influences phase variance in the next section.

E. Gait compatibility influences spatial packing

Contact interactions among the collective undulatory
swimmers drive them into compatible configurations. How-
ever, the range of available compatible configurations in-
creases as the lateral spacing increases and thus we expect
that the group density will influence the allowable phase and
spatial variance in groups. To address this question we stud-
ied the packing configurations of large groups of three-link
swimmers in simulation to determine the relationship between
group phase variance and packing density. We used a short
channel to confine the swimmers longitudinally by a distance
of 1.1L constraining the ability to longitudinally reconfigure.
We initialized 50 three-link swimmers within a channel of
fixed lateral width [Fig. 7(a)] and we measured the spatial
positioning, and the deflection of the rotational joints from
their commanded trajectory (joint error). The swimmers were
all oriented along the direction of the channel length so that
they only interacted through lateral collisions and their ori-
entations were approximately the same. We varied the lateral
confinement distance and the range of gait phases to observe
how spatial and phase variance influences the packing and
contact interactions between groups of undulatory swimmers.

We characterized contact interactions between swimmers
by monitoring both the joint error, and the contact forces.
The joint error is linearly proportional to the joint torque in
the joint control system, and thus this is a metric of contact
interactions between swimmers. Since joint error varies from

positive to negative through an oscillation cycle we take the
absolute value of all joint errors and time average over five
periods. When the swimmers are not in contact the joint error
is approximately zero (viscous drag causes the error to never
reach zero). However, when the lateral density is increased
the swimmers begin contacting each other and causing the
joints to deviate from their assigned motion. We examine the
influence of phase-range and lateral density on the packing
behavior of the swimmers [Fig. 7(b)]. For a fixed density, in-
creasing the phase-range resulted in an increase in the overall
joint error of the swimmers in the group indicating collisions
and noncompatible space-phase relationships. Similarly, for a
fixed phase-range increasing the density caused an increase in
joint error.

We characterized the compatibility threshold in simu-
lations by determining for each phase-range and density
combination whether the mean joint error was above that of
an individual swimmer (threshold of 0.01 rad.). The compat-
ibility threshold from simulations is shown in blue circles in
Fig. 7(b), where error bars are the result of five replicate simu-
lations. As the lateral density or the phase range increases the
mean joint error increased. The threshold curve from direct
simulations appears to follow an inverse relationship between
lateral density and phase range.

In addition to measuring joint error we also measured the
average contact forces between swimmers in numerical simu-
lations. We averaged the contact forces across all swimmers
over five periods of oscillation to determine how large the
contact interactions are. Similar to the joint error [Fig. 7(b)],
we observe that, as density and phase variation increase, so
does the average contact force between swimmers [Fig. 7(c)].

To investigate the relationship between gait phase variance
and the lateral packing density we now model the swimmers
as single-period sinusoidal curves (i.e., ξ = 1). We first ana-
lyzed this system through a Monte Carlo (MC) approach to
estimate the phase-density threshold curve. The MC method
consisted of the following steps: (1) Draw 3000 random
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sample phases φi from a uniform distribution between zero
and φmax. (2) Set the first sinusoid at y1(x) = sin(x + φ1). (3)
Determine the required �y2 so that y1 and sinusoid y2(x) =
sin(x + φ2) + �y2 make tangent contact (i.e., are as closely
spaced in the y direction as possible without overlap). �y2

is the neutral lateral position of sinusoid y2. (4) Repeat the
previous step for all remaining swimmers with phases from
the 3000 randomly drawn list. (5) The total lateral space
occupied by the group is �y3000. The lateral packing density
is given as, ρ̃ = N

�y3000
. We repeated the whole process above

100 times to estimate the ρ(φmax) curve reported in Figs. 7(b)
and 7(c). For example, Fig. 7(a) provides a snapshot of a
group of sinusoidal swimmers whose phases were randomly
selected between [0, φmax] and are in perfect tangent contact.
In Figs. 7(b) and 7(c) we plot the MC estimate of ρ̃ shown as
the red curve. The MC estimate shows qualitative agreement
with the estimated threshold from the three-link simulations.

Lastly, we perform a direct analysis of the phase-density
relationship of sinusoidal curves to exactly compute the com-
patibility packing threshold. We assume a group of sinusoidal
curves with random, uniform phase distribution in the range
φi ∼ U (0, φmax). We set �x = 0 in Eq. (5) and rearrange to
the following:

�y

2A
= sin

(
�φ

2

)
. (6)

For a swimmer group with phases drawn at random from the
uniform distribution φi ∼ U (0, φmax) the expected swimmer
separation in the y direction can be derived from Eq. (6),

N∑
i=1

|�yi|
2AN

= 1

N

N∑
i=1

∣∣∣∣sin

(
�φi

2

)∣∣∣∣

=
∫ φmax

−φmax

∣∣∣∣sin

(
s

2

)∣∣∣∣ fpdf (s)ds, (7)

where s = �φ and fpdf (s) is the probability distribution of
the phase difference. Since φi ∼ U (0, φmax), �φ follows a tri-
angle distribution between [−φmax, φmax] which is symmetric
about the y axis:

ỹ

2A
=

∫ φmax

−φmax

∣∣∣sin
( s

2

)∣∣∣ fpdf (s)ds

= 2
∫ φmax

0

∣∣∣sin
( s

2

)∣∣∣
(

1

φmax
− 1

φ2
max

s

)
ds

= 4

φmax
− 8 sin

(
φmax

2

)
φ2

max

= 4

φ2
max

[
φmax − 2 sin

(
φmax

2

)]
. (8)

We now calculate the expected lateral distance Y required
for a group of N swimmers, considering the swimmer body
width w:

Y = Nỹ + Nw

= 8AN

φ2
max

[
φmax − 2 sin

(
φmax

2

)]
+ Nw. (9)

Thus the expected lateral density with all swimmers in com-
patibility is ρ = N/Y and the density normalized by the
peak-to-peak oscillatory amplitude is given by ρ̃ = 2AN/Y ,
which yields

ρ̃ = φ2
max

w
2Aφ2

max + 4φmax − 8 sin
(

φmax

2

) . (10)

We see in Figs. 7(b) and 7(c) that the expected value calcu-
lation agrees extremely well with the Monte Carlo simulation.
Furthermore, we can examine the extremes of the density vari-
ation and their effect on packing density. When φmax = 0 the
non-normalized density becomes ρ = 1

w
which corresponds

to the maximum packing density of the swimmers in contact
with each other. Overall we find that, as the phase variation
within a swimming group increases, the required lateral den-
sity within the group must decrease or else swimmers collide
with each other. This relationship provides compelling moti-
vation for animal and engineered swarms of swimming agents
to synchronize their gaits to achieve higher density groups.

F. Compatible configurations have a broad basin of attraction

Swimmers in noncompatible configurations are pushed
into compatibility through contact interactions. In the ide-
alized situation in which swimmers are represented by
sinusoidal body position the compatible configuration is a
relative equilibrium where contact no longer occurs. In this
section we study how the initial longitudinal separation �x
and phase detuning �φ influence the final state reached by
the pair of undulatory swimmers. We study this for the case
of close proximity with wall separation d = 13 cm where
contact interactions are reinforced by the close proximity (i.e.,
swimmers cannot push each other away laterally).

In a first example we study the spatial evolution of five
different initial conditions of longitudinal separation �x0

[Fig. 8(a)]. The phases are the same for these swimmers
(�φ = 0) and so the compatible configuration is �x = 0.
Initial separation distances that are far away from the com-
patible separation (|�x0| > 0.3) are pushed away from the
�x = 0 compatible configuration as the swimmers repel each
other along the longitudinal axis. However, when the initial
separation distances are closer (approximately |�x0| � 0.3)
the swimmers experience an effective attractive interaction
force in the longitudinal direction and ultimately end in the
compatible state for their phase difference.

We study the evolution of longitudinal separation across
the full range of relevant initial separation and phase
differences. From each initial condition we compute the to-
tal longitudinal position change, �x f − �x0 and plot the
heatmap of this value [Fig. 8(b)]. Nonzero values of longi-
tudinal position change represent scenarios where interaction
forces drive the swimmer pairs to compatibility conditions.
Zero values represent the attraction regions. It is interesting to
note that while the only interactions between the swimmers
are through repulsive contact forces, the confinement and the
traveling-wave shape change results in regions of longitudinal
attraction between the swimmers, effectively a cohesive force
between swimmers. This attractive potential will be further
studied in the next section.

054604-9



ZHOU, PERALTA, HAO, AND GRAVISH PHYSICAL REVIEW E 105, 054604 (2022)

(b)(a)

�

����

������������ ����

��������������� ����

Time

1

-1

0

0
-0.6

0

0.6

π-π0 π-π

compatib
ilit

y conditio
n

compatib
ilit

y conditio
nunsta

ble equilib
riu

m

1

-1

0

(c)

FIG. 8. Compatible configurations minimize the contact between swimmers. (a) We envision that longitudinal dynamics are governed
by a potential-energy landscape dependent on the phase difference between swimmers. Swimmers initialized with �φ = 0 and different
longitudinal positions (�x0/λ) evolve to one of three compatible configurations depending on initial position. All initial positions |�x0/λ| �
0.3 evolve to �x f /λ = 0. (b) Heatmap represents the distance traveled from initial condition to compatibility, �x f − �x0 for three-link
swimmers. (c) Heatmap represents the distance traveled from initial condition to compatibility, �x f − �x0 for sinusoidal swimmers. The solid
lines are the compatibility lines. The dashed lines separate regions of attraction between the middle and outer compatibility lines.

From the position change map we can clearly see why
the three-link swimmer experiment exhibited the clustering
along the �x axis [Figs. 3(b) and 5(a)]. The minimum of
the interaction “potential” does not follow the compatibility
prediction from the sinusoidal calculation and instead follows
a stair-stepped shape along the �x vs �φ parameter space
[Fig. 8(b)]. To determine how the three-link swimmer posi-
tion change map differs from the sinusoidal prediction we
compute the longitudinal position change required for two
sinusoidal curves to come in to compatibility when �y = 0.
For two sinusoidal curves, the longitudinal displacement re-
quired to reach compatibility is the minimum �x f that results
in the compatibility condition [y1 − y2 = 0; from Eqs. (3)
and (4)]. In Fig. 8(c) we show the displacement required to
reach compatibility for two sinusoidal curves. The basins of
attraction for the different compatibility lines are shown as
solid lines of the same slope in Fig. 8(b). Along the dashed
lines we observe that the minimum distance for compatibil-
ity undergoes a discrete change in sign. An initial condition
slightly below the upper dashed line will evolve to the central
compatibility line while an initial condition slightly above
the upper dashed line will evolve to the upper compatibility
line.

G. Potential energy modeling of compatible
configurations in simulation

To gain insight into the forces two swimmers experience
when not in compatibility we performed simulations. In a first
set of simulations we constrained the midpoint position (but
not orientation) of two three-link swimmer’s middle link so
that swimmers could interact through contact forces but could
not move their central position laterally or longitudinally. We
arranged swimmers with lateral separation, �y = 3 cm and
longitudinal separation �x = 0. In this arrangement �φ = 0
is the compatible configuration. In a sweep of simulations we
varied �φ conditions and measured the time-averaged contact
forces between swimmers over five periods. The compatibility
condition coincided with a minimum in the contact forces

[Fig. 9(a)] while detuning phase resulted in an increase in
contact force. This observation indicates two important points:
(1) as expected, contact interactions drive the spatial dynamics
in this system, and (2) the system evolves to a state which min-
imizes the contact interactions among these active undulatory
swimmers.

We hypothesize that the time-averaged contact dynamics
between swimmers can be considered as an effective interac-
tion potential with a minimum at compatibility. To measure
the effective potential of the compatibility configurations in
simulation we allowed two swimmers with �φ = 0 to reach
compatibility and then we applied a constant longitudinal
separating force δF to each swimmer in opposing directions
[Fig. 9(b)]. The separating force δF was applied to each
swimmer by applying a force of δF/3 to the center of mass
of each link on the simulated swimmers. We observed that
the swimmers separated by a longitudinal distance δx in the
presence of this force and for small δF this position was sus-
tained until the force was removed [Fig. 9(b)]. Thus, through
the force perturbation we can probe the potential-energy basin
of the compatible configuration for �φ = 0.

In simulation we varied δF and measured δx over a range
of confinement wall distances to observe the cohesive interac-
tion. We observed a linear relationship between the applied
force and the steady-state separation, suggesting that com-
patible configurations act like a simple harmonic potential
[Fig. 9(c)]. We fit the “stiffness” of the compatible state as
δF = k(δx − δx0), where k is the interaction potential and δx0

is an offset. The offset δx0 represents the ability for systems
with large enough lateral spacing to be found over a range of
longitudinal separation distances (�x) when in compatibility.
As we continue to increase the separating force δF , the aver-
age interaction force between the swimmers is no longer able
to hold them together and they will separate longitudinally. In
this case the swimmer pairs eventually separate and decouple
from each other.

We measured the time it takes for swimmers to separate
by a center to center distance of L under different forces
and confinement distance. The separation time increases with
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FIG. 9. Cohesive longitudinal interactions depend on confinement. (a) Magnitude of contact force between two swimmers during five
periods of oscillation, with initial conditions �x = 0 and �φ varied from −π to π . The contact-interaction force grows with compatibility
detuning. Dots represent mean contact force and error bars are standard deviation. (b) The cohesive magnitude of the compatible configuration
was measured by applying equal and opposite perturbation forces δF . The separation distance from compatibility, δx, is measured. (c) Force-
displacement relationship for nine confinement distances of wall widths (0.10 to 0.18 m in 0.01 m increments). Error bars represent the standard
deviation of δx at applied δF . (d) Escape time for wall widths (0.12 to 0.18 m in 0.01 m increments). The black curve represents the escape
time without walls. Error bars represent the standard deviation of escape time. (e) Effective interaction spring constant as a function of wall
width. Error bars represent estimated spring stiffness with 95% confidence bounds. (f) Offset distance (δx0) as a function of wall width. Error
bars represent estimated δx0 intersection with 95% confidence bounds.

decreasing δF [Fig. 9(d)]. When there is no lateral constraint,
the escape time was estimated and shown as the black line
which is linear (slope = −0.99) on log scale as shown in
the inserted plot. We can provide rationale for this inverse
behavior between applied force δF and separation time. In the
absence of contact forces the separation time can be estimated
through the relationship between applied force ±δF and vis-
cous force through the following quasisteady relationship:
δF = ηavg

�x
�T . This can be reformulated into the time to sepa-

rate as �T = ηavg
L

2δF , which displays the inverse relationship
between separation time and force. In this equation, ηavg rep-
resents the period-averaged projected drag coefficient on the
swimmers along the direction of motion, and �x = L

2 since
both swimmers separate by ± L

2 to achieve a total separation
of one body length, L.

We found that the cohesion stiffness k of the compati-
ble state decreases with increasing wall width and becomes
increasingly large as the confining wall spacing decreases
[Fig. 9(e)]. Furthermore, the range of displacements with zero
interaction force (δx0 > 0) qualitatively follows the compati-
bility condition [Eq. (5)], which is shown in the dashed line
of Fig. 9(f). These simulations indicate that compatible states
are neutrally stable configurations and a linear interaction
force drives swimmers into compatibility. The boundary of

the neutral region, δx0, likely lies below the prediction from
the compatibility model due to the three-link geometry of the
swimmers. This is similar to the comparison of the sinusoidal
and three-link compatibility basins in which effects of the
discrete link geometry cause the observations to deviate from
theory.

IV. SUMMARY AND CONCLUSIONS

In this paper, we studied the role of contact interactions
between undulatory swimmers in experiment and simulation.
We found that contact interactions among confined swimmers
drive them to stable spatial configurations called compatible
gaits (originally introduced in Ref. [48]). The compatibility
criteria is determined by the lateral spacing and phase differ-
ence between swimmers. We found considerable agreement
between the compatibility model prediction and the exper-
iment and simulation results. Compatible gaits are relative
equilibrium configurations with time-averaged interactions
that have a linear force-displacement relationship along the
longitudinal axis and are approximated as a harmonic poten-
tial well.

Similar cohesive interactions have been observed to occur
in other active, collective systems. However, such interactions
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are often mediated through a fluid and thus the interaction
forces on the bodies can be exerted over long distances and
smoothly decay as separation increases. For example, recent
work has found that the spatial arrangements of undulatory
swimmers inspired from fish schools are cohesive, with a
strength of interaction that is dependent on the actuation
dynamics and spatial positioning [68,69]. Linear perturba-
tions of these simple swimmers yielded linear interaction
forces that were approximated as harmonic potentials [68,69].
Experiments with tandem undulating foils also demonstrate
stable spatial configurations of the foils mediated through
fluid mechanics [13] and stable but discrete swimming speeds
[14]. A fundamental difference in contact-coupled systems is
that, once out of reach, interactions can no longer occur. In
theory long-slender swimmers in gait compatibility could be
infinitesimally close and yet not have any physical interactions
because they do not make contact.

This work was inspired in part by the observations of
small undulatory worms and their collective swimming be-
havior when in close proximity. Pairs of the nematode C.
elegans were studied in a confined channel (much like in
the experiments reported here) and were observed to adjust
their undulatory gait to match their neighbor’s gait [48]. The
authors in that work argue that the nematodes are too large
for hydrodynamics to be important and thus it must be contact
that is driving the gait dynamics. We acknowledge there are
competing theories for why such synchronization occurs in
these worms [70], and that close-range fluid interactions may
be important; however, these counterpoints do not contradict
the work we have presented here. Similar collective undula-
tory gaits have been observed in the vinegar eels (Tubatrix
aceti) [50] in which case the authors present a modified Ku-
ramoto model that emulates the effect of steric interactions
to describe the gait adjustment. In this work we do not al-
low for phase modulation of the swimmers, and only spatial
rearrangement. However, this scenario is quite similar to the
studies of infinitely long oscillating sheets that do not change
undulatory phase but can realign spatially and which are com-
monly referred to as “synchronized” in the literature [67].

In this work we focused on planar motion because the sys-
tems we are inspired by (C. elegans, undulatory robots, etc.)
typically move in a planar fashion. However, for example, the
sidewinding motion of snakes and snake-robots [35] occurs
in 3D and there might be interesting collective states asso-
ciated with the interactions of the “corkscrew” shape of the
sidewinders. Similarly, we focused on relatively high-density
and aligned states of undulatory swimmers, a kind of “undula-
tory nematic state.” However, at lower densities the rotational
orientations of the swimmers will become important and may
lead to other interesting collective states.

This work is inspired from the broad areas of active matter
systems, granular materials, and robotics. The convergence of
these themes has been of significant interest in recent years be-
cause the stochastic behavior of interacting robotics systems
can be exploited for robust, redundant, and resilient robots.
Recent studies of robotic active matter such as smarticles [71]
and stochastic particles [72] have highlighted how emergent
collective behavior can be designed and tuned through lo-
cal contact-interaction rules. The role of contact interactions

among shape-changing active matter systems may have appli-
cations in designing collective robot swarms that operate in
close proximity. Building large functional systems from many
constituent parts is not new in robotics and has gone under
the titles of modular, reconfigurable, and swarm robotics over
the years (See Ref. [73] and [74] for reviews). However,
recent connections drawn between these robotic collectives
and active matter physics [75,76] suggest novel and fruitful
intersections between these fields in the years to come.

APPENDIX: SIMULATION DETAILS

We simulated the multiswimmer numerical experiments
in Project CHRONO (referred to as CHRONO). CHRONO is a
multiphysics dynamics engine that handles rigid body dy-
namics and contact. The source code is freely available [77]
and CHRONO simulations have been validated against several
experiments and comparisons with other numerical solvers for
accuracy [62]. Our simulations took place in CHRONO version
5.0.0.

A multibody physics solver is used to model the rigid body
dynamics of multibody systems coupled together through
kinematic constraints. CHRONO treats the generalized position
q and velocity vectors q̇ of rigid bodies from a Cartesian ap-
proach, where the generalized position is the location of each
body’s center of mass in the absolute coordinate system. The
multibody dynamics in the absence of friction are described
by the following set of equations:

g(q, t ) = 0,

M(q)v̇ = f (t, q, v) + G(q, t )λ̂.

The first equation represents constraints between bodies, in
the case of this paper, revolute joints, which are contained in
the constraint equations g(q, t ) = 0. The second equation de-
fines the dynamics where M is the mass matrix, f are internal
(i.e., Coriolis forces, joint torques) and applied forces, and
G(q, t )λ̂ represents the constraint reaction forces.

The forces applied to the bodies may also include contact
forces that “appear” and “disappear” when contact between
bodies are made or broken. In the implementation in this work,
contact is handled through the discrete element method using
a complementarity approach (DEM-C). The complementar-
ity approach models contact interactions as “rigid” contacts
which cannot penetrate each other. This is in contrast to
penalty DEM methods that model contact through elasticity
and small body overlap (with elastic repulsive force). These
approaches have been compared in the literature [63]. The
complementarity approach poses and solves a complemen-
tarity optimization at each time step. The complementarity
problem specifies that between every body, either a nonzero
gap distance exists, or a nonzero contact force exists. The
details of how this complementarity problem is posed and
solved are described in Tasora et al. [62], and Heyn et al. [64].

The time stepper (time integrator) used in our simulation
is the linear implicit Euler method. The step size of this
integrator is 0.005 s. A solver is used to compute the un-
known accelerations and reaction forces at each time step
of the simulation. We are using the default PSOR, an itera-
tive solver based on projective fixed-point method, with over
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TABLE I. Simulation parameters.

Name Variable Value

Body length l 162 mm
Body width w 15 mm
Body height h 30 mm
Body mass m 73 g
Control P gain KP 0.15 N m/rad
Torque saturation Ts 1.5 N m
Joint amplitude β0 40◦

Joint frequency f 0.5 Hz
Drag coefficient cd 1

relaxation and immediate variable update as in successive
over-relaxation (SOR) methods.

We implemented viscous drag forces acting on each link
of the simulated swimmers. The viscous drag forces were ap-
plied to the center of mass of each link. The drag equations are
those provided in Hatton et al. [40]:

Fi,x =
∫ L

−L

1

2
cdξi,xd� = cd Lξi,x,

Fi,y =
∫ L

−L
cdξi,yd� = 2cd Lξi,y,

Mi =
∫ L

−L
cd�(�ξi,θ )d� = 2

3
cd L3ξi,θ ,

where Fi,x and Fi,y are respectively the longitudinal and lateral
forces, Mi is the moment, cd is the differential viscous drag
constant, and ξi = [ξi,x, ξi,y, ξi,θ ]T is the body velocity of the
center of the ith link with respect to the stationary fluid [65].

Details of simulation parameters are listed in Table I.
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