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8. Supplementary material

8.1. Computing added mass inertia

The standard method for computing mean added mass is to treat the added mass as a

cylindrical volume of fluid that surrounds the wing [13]. The dimensions of the cylinder

are defined by the dimensions of the wing: the radius is half the mean chord length,

c̄/2, the length is single wing span R measured from wing hinge to wing tip, and the

density is the fluid density ⇢. The added rotational inertia is thus the rotational inertia

of a cylinder of mass mA that rotates about its base:

mA = ⇢
⇡

4
Rc̄2

IA =
1

16
mAc̄

2 +
1

3
mAR

2

In our system, with c̄ = 3.5 cm, R = 10 cm, ⇢H2O = 977 kg
m3 , added mass inerita

IA = 3.465⇥ 10�4 kg m2.

8.2. Structural damping modeling

Structural damping for generic oscillatory motion can be represented as an additional

complex term in the spring sti↵ness parameter:

K = k(1 + i�) (32)

However, this representation is not convenient for numerical modeling because of the

complex term. If we assume that the oscillatory motion is sinusoidal, it is possible to

express structural damping another way. Beginning with a generic spring-wing equation

Itẍ+ k(1 + i�)x+ �ẋ2 = 0

we make the substitutions x = Xei!t and ẋ = i!Xei!t:

Itẍ+ kXei!t + �kiXei!t + �ẋ2 = 0

Using the definition ẋ
! = iXei!t, we can rearrange:

Itẍ+ kx+
�k

!
ẋ+ �ẋ2 = 0 (33)

Thus, the structural damping term can be represented as a viscous damper that

is normalized by the oscillation frequency, implying frequency-independent viscous

damping.
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8.3. Derivation of the non-dimensional spring-wing equations

We introduce dimensionless time and angle parameters normalized to wing oscillation

amplitude and frequency:

⌧ = !t, qw =
✓

✓0
, q̇w =

✓̇

!✓0
, q̈w =

✓̈

!2✓0
Plugging these terms into Eq. 7 and rearranging coe�cients, we obtain

It✓0!
2q̈w + kp✓0qw +

�kp
!

!✓0qw + �✓20!
2|q̇w|q̇w = T (t)

q̈w +
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�kp
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It

|q̇w|q̇w =
T (t)

It✓0!2

q̈w + K̂pqw + �K̂pq̇w +
1

N
|q̇w|q̇w = T̂p(t) (34)

Eq. 34 is a forced nonlinear oscillator defined by non-dimensional parameters K̂,

the reduced sti↵ness; �, the structural damping loss modulus; and N , the Weis-Fogh

number.

Performing a similar substitution for the series system we arrive at the equation

q̈w + K̂sqw + �K̂sq̇w +
1

N
|q̇w|q̇w = T̂s(t) (35)

which is identical to Eq. 34 except for the normalized torque, which is now defined as

T̂s(t) =
K̂s

✓0

⇣
�(t) +

�

!
�̇
⌘

(36)
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Figure 12. Robophysical system component detail. A diagram of the system is shown
at the right, with labels for each of the components. a) the design process of the silicone
torsion spring, from 3D CAD model based on desired dimensions to 3D-printed mold
for silicone to completed spring with acrylic adapter plates and steel flange couplers.
b) An aluminum inertia plate used to change the overall system inertia. c) The fixed-
pitch acrylic wing with aluminum hub and 1/4” steel shaft. d) Teknic Clearpath SDSK
Motor used to drive the system (photo from Teknic). e) Dimensions of the 115-gallon
rectangular tank (Chem-Tainer) as well as water depth.

8.4. Robophysical system details

In Figure 12 we show the elements of the robophysical system. The left column of Fig. 12

shows the design process of the silicone torsion spring, from 3D CAD model based on

desired dimensions (top-left) to 3D-printed mold for silicone (mid-left) to completed

spring with acrylic adapter plates and steel flange couplers (bottom-left). In Fig. 12b

we show the aluminum inertia plate that was used to change the overall system inertia.

Fig. 12c shows the fixed-pitch acrylic wing with aluminum hub and 1/4” steel shaft. We

used a Teknic Clearpath SDSK Motor used to drive the system (12d). The dimensions

of the 115-gallon rectangular tank as well as water depth are shown in Fig. 12e.

8.5. Computing drag torque coe�cient

We follow the standard methods for blade-element analysis of quasi-steady flapping

wings. The wing is broken into di↵erential chord elements, each of which experiences a

di↵erential aerodynamic torque,

dQaero =
1

2
r⇢

⇣
r✓̇
⌘2

CD(↵)c(r)dr (37)

The di↵erential torques along the wing can be integrated across the entire wing shape

resulting in the following equations

For simplicity we express the velocity dependence of the aerodynamic torque as,

✓̇2, and the sign dependence on the direction of motion is implied. The aerodynamic

torque is governed by both the wing speed and the aerodynamic torque constant, �,
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which itself is a function of wing geometry (wing radial length, R and shape factor r3),

wing pitch angle (↵), and fluid density (⇢). The drag coe�cient, CD(↵), is dependent

on the pitch angle of the wing, ↵, which is 0 when the wing is vertical, and ⇡/2 when the

wing is horizontal. From Dickinson [10] the drag coe�cient at insect-relevant Reynolds

numbers is estimated as

CD(↵) = 1.92� 1.55 cos(2.04↵� 9.82) (38)

8.6. Design and fabrication of silicone springs

We designed and 3D-printed two-piece molds for casting the springs. Each mold was

treated with Ease Release 200TM (Smooth On) before being filled with a common silicone

material used in soft-robotics, DragonskinTM 30A silicone (Smooth-On) [29]. Care was

taken to de-gas the silicone in a vacuum chamber before filling the mold. The silicone

molds were allowed to cure in a positive pressure chamber for at least 24 hours before

removal and use.

The dimensions of the springs were determined by the desired spring sti↵ness. The

torsional sti↵ness of a silicone spring is given by the sti↵ness equation for a twisting

cylinder:

ks =
µ⇡R4

2L
(39)

where µ is the shear modulus, R is the spring radius, and L is the spring length. We

used three spring designs of constant length and radius 13, 16, 18 mm corresponding to

torsional sti↵ness values of ks = [0.163, 0.416,0.632] Nm/rad.

8.7. Data Processing

Analysis of both experiment and simulation data relied on the wing and motor angle

data. To generate a consistent sampling time of all experiments we interpolated position

measurements to a constant sample rate. The measured angle data was filtered with

a 5th-order Butterworth filter at cuto↵ frequency of 10Hz (approximately 2.5 times

greater than the peak driving frequency). Velocity was computed through numerical

di↵erentiation of the filtered position, and similarly acceleration from the filtered

velocity.

We observed that the wing trajectories were consistent with a single frequency sin

wave except when actuation frequency or amplitude approached the epxerimental limits

(at low-amplitude and high-frequency and at high-amplitude). We used a nonlinear

least-squares sine fit to find amplitude and phase of the motor, �(t), and wing, ✓(t),

trajectories respectively.
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8.8. Derivation of non-dimensional resonance frequency for series system

The following derivation is based on the process in [6]. For a system with a spring

with sti↵ness k in series with an actuator that drives a mass m subject to aerodynamic

loading, �ẋ2, the power driving the mass, Pw is the sum of the aerodynamic and inertial

forces times the velocity:

Pm = (Fa + Fi)ẋ = (�ẋ2 +mẍ)ẋ (40)

The strain energy in the spring, E, is

E =
1

2
k�1(Fa + Fi) =

1

2
k�1

�
�ẋ2 +mẍ

�2
(41)

Since the motor must both move the mass and compress the spring, the actuator power,

Pact, is defined

Pact = Pm + Ė

Pact =
�
�ẋ2 +mẍ

� ⇥
ẋ+ k�1 (2�ẋẍ+m

...
x )

⇤
(42)

If we assume that the mass follows a sinusoidal trajectory, x(t) = x0 sin!t, we can

compute the derivatives and plug into 42:

Pact = x2
0!

3 cos!t
⇥
�x0 cos

2 !t�m sin!t
⇤ ⇥

1� k�1!2(2�x0 sin!t+m)
⇤

(43)

If we define a non-dimensional actuator power, P̂act = Pact

mx2
0!

3 , we can get the non-

dimensional expression:

P̂act = cos!t
�
N�1 cos2 !t� sin!t

� h
1� K̂�1(2N�1 sin!t+ 1)

i
(44)

Bennett et al. showed that this actuator power expression is minimized over half an

oscillation period when it is always greater than zero. The relationship between K̂ and

N that guarantees that condition is

K̂ =
p
1 + 4N�2 (45)

Eq. 45 describes the of spring, mass, aerodynamic damping and oscillation amplitude

to get resonant oscillation at a particular frequency. Recalling that K̂ = k
m!2 , N = m

�x0
,

and natural frequency !2
n = k

m we can get an expression for that frequency:

!2
r =

kp
m2 + 4�2x2

0

=
!2
np

1 + 4N�2
(46)
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8.9. Derivation of non-dimensional wing torques in the parallel system

Here we provide the full derivation for the non-dimensional work presented in Eq. 28

and 29. We start from the non-dimensional force terms in the parallel system dynamics

(Eqn. 8). We make the assumption of sinusoidal wing motion, such that

q = sin(⌧)

q̇ = cos(⌧)

q̈ = � sin(⌧)

= �q

Substituting these expressions in for the individual force terms in the parallel system

and multiplying by the aerodynamic force in those equations results in

Q̃aero = cos2(⌧)

Q̃inertial = �Nq

Q̃idealelastic = K̂Nq

Q̃structural = �K̂N cos(⌧)

In order to write Q̃aero and Q̃structural in terms of wing angle we can use the following

trigonometric relationship

cos2(⌧) = 1� sin2(⌧)

= 1� q2 (47)

cos(⌧) =
p
1� q2 (48)

Substituting in the expressions of cos(⌧) and cos2(⌧) yields the non-dimensional work

equations in terms of just the normalized wing angle, q.

8.10. Derivation of non-dimensional wing torque due to viscous damping

We can use the same method as in the above section to show that the relationship

between the Weis-Fogh number N and the dynamic e�ciency holds true even if we

change the damping model. If we choose a viscous damping model where torque is

proportional to velocity, ⌧viscous = cv✓̇, we can get the non-dimensional torque term as

in Eq. 8:

⌧̂viscous =
cv✓o!

I✓o!2
q̇ = 2⇣

p
K̂q̇ (49)

where we have used the standard definition of the harmonic-oscillator damping ratio,

⇣ = cv
2I!n

. The damping ratio must be less than one for resonance to be possible.
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Multiplying by the maximum aerodynamic force, we arruve at the non-dimensional

torque

Q̃viscous = 2⇣N
p

K̂ cos(⌧) = 2⇣N
q

K̂(1� q2) (50)

which scales linearly with N , the same as the structural damping torque. Therefore,

viscous damping leads to a dynamic e�ciency that monotonically decreases with the

Weis-Fogh number resulting in the same qualitative result as with structural damping.


