
Experimental Methods

Discussion & Conclusions
1. Our results corroborate observations from muscle physiology 

literature, suggesting that our model captures important 
features of asynchronous muscle dynamics.

• Molloy showed that w.b.f. is proportional to 𝑟𝑟3 [3].

• Pringle [5] suggested that peak power should correspond 
to 𝑟𝑟3 = 2𝜋𝜋𝑓𝑓𝑛𝑛

2. We show that emergent asynchronous oscillations depend 
on muscle parameters AND mechanical system parameters

• Peak power changes with muscle strength

• Internal friction must be overcome to induce oscillations

• Oscillation frequencies will always be near, but not equal 
to the natural frequency of the system

3. This simple formulation allows us to learn how insects and 
robots may achieve control by modulating the material 
properties (stiffness, inertia, etc.) of their flight anatomy 
rather than the muscle/actuator input
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Background
The wing motion of many flying insects is generated by pairs of 
antagonistic power muscles that pull on the elastic exoskeleton which  
transmits motion to rotational wing hinges (Fig. 1). Insect flight muscle is 
typically characterized as either synchronous or asynchronous. 
Asynchronous muscle is a specialized type that experiences a delayed 
increase in tension (Fig. 2) in response to a step strain increase, a 
phenomenon known as delayed stretch-activation (dSA).

When arranged antagonistically, asynchronous muscles self-oscillate, 
enabling high-frequency wingbeats in flies, bees, and  other  insects [1]. 
While the  physiology of dSA muscle in isolation has been studied  
extensively, the interaction of body elasticity, asynchronous muscle, 
and aerodynamic loading in a  complete “spring-wing” mechanical 
system has not been examined.

A Feedback-Based Model of dSA
The transient dSA response, taken as a sum of exponents – a slow rise 
with rate 𝒓𝒓𝟑𝟑 and slower decay with rate 𝒓𝒓𝟒𝟒 (Fig 2.) – and a constant may 
be expressed as 

�𝐹𝐹𝑎𝑎 𝑡𝑡 = 1 − 𝑒𝑒𝑟𝑟3𝑡𝑡 + 𝑒𝑒−𝑟𝑟4𝑡𝑡 − 1

Since �𝐹𝐹𝑎𝑎(𝑡𝑡) is the response of the muscle to a strain-rate impulse (strain 
step), the Laplace transform of the response yields the transfer function 
from strain rate to muscle force:

𝐺𝐺 𝑠𝑠 =
�𝐹𝐹𝑎𝑎 𝑠𝑠
𝑉𝑉(𝑠𝑠)

=
𝑟𝑟3 − 𝑟𝑟4

𝑠𝑠2 + 𝑟𝑟3 + 𝑟𝑟4 𝑠𝑠 + 𝑟𝑟3𝑟𝑟4

The impulse response of this transfer function is qualitatively similar to
insect muscle response data and the transfer function has a form that

1. Is easily integrated into a feedback control system

2. Can be parameterized by 2 rates, 𝒓𝒓𝟑𝟑 and 𝒓𝒓𝟒𝟒, and a strength term, 𝝁𝝁
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Figure 1. Cutaway visualization of a blowfly 
thorax with antagonistic power muscles 
shown in red and yellow [2]

Figure 2. Transient dSA tension response 
from the giant waterbug L. indicus [3].
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We built a dynamically-scaled spring-wing system (detailed in [4]) of a flapping 
insect consisting of

• A fixed-pitch rigid wing in water, driven by a torque-controlled BLDC motor
• A silicone torsion spring approximating elastic elements in the insect thorax
• A control system in Simulink Desktop Real-Time that measures wing angle 

(strain), computes the forces from antagonistic “muscle” blocks, and sends 
torque commands to the motor driver

Oscillations were induced by providing a torque “kick” to overcome friction. 

We measured how frequency and cycle-averaged power varied when we 
varied:

• The rate parameter 𝒓𝒓𝟑𝟑 (holding 𝑟𝑟4 = 0.8𝑟𝑟3) from ~0.5(2𝜋𝜋𝑓𝑓𝑛𝑛) to 
~2.5(2𝜋𝜋𝑓𝑓𝑛𝑛), where 𝑓𝑓𝑛𝑛 = 2.4 𝐻𝐻𝐻𝐻 is the natural frequency of the system

• The strength parameter 𝝁𝝁 from 1.5 to 2.5 (constrained by hardware limits)
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The above plots show the resulting frequencies and cycle-averaged power, respectively, of the 
emergent oscillations at each value of 𝑟𝑟3. Different colors represent values of 𝜇𝜇, and the dotted 
lines indicate the upper and lower 95% confidence bounds.

• No oscillations at low values of 𝒓𝒓𝟑𝟑, though the exact value at which they begin varies with 𝜇𝜇

• Oscillation frequency increases with 𝒓𝒓𝟑𝟑, and oscillation frequencies are consistently higher 
than the system’s natural frequency

• Despite higher frequencies, decreasing oscillation amplitudes lead to a peak in cycle-averaged 
power around 𝒓𝒓𝟑𝟑 = 𝟐𝟐𝟐𝟐𝒇𝒇𝒏𝒏 (gray line), followed by a drop-off at higher values of 𝑟𝑟3

𝒓𝒓𝟑𝟑
𝒓𝒓𝟒𝟒
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