Gravish · lab

Introduction

Many microorganisms are capable of synchronizing their body or appendage motion for locomotion or for driving fluid flows [1-2].

Recent studies have determined that intermittent mechanical contact among organisms is responsible for synchronization in larger organisms [3-4].

We present a neuromechanical hypothesis for emergent synchronization through contact and demonstrate the robot-robot interaction by means of limit cycle in a simplified system as below. Further, the control law is multi-link robot executed on system for experimental purpose.

Collision position

Contact condition

 $x < -\frac{\delta}{2}$

 $r\cos(\pi - \phi_2^-) - r\cos(\phi_1^- - \pi) = \delta$

 $\Leftrightarrow r\cos\phi_1^- - r\cos\phi_2^- = \delta$

Joint oscillations are controlled by a phase oscillator or limit cycle, when joints collide their position (x-axis) is equal and they will be in contact until the oscillator phases reach the separation condition.

[1] Jens Elgeti and Gerhard Gompper. Emergence of metachronalwaves in cilia arrays. Proc. Natl. Acad. Sci. U. S. A., 110(12):4470–4475, March 2013. [2] Gwynn J Elfring and Eric Lauga. Hydrodynamic phase locking of swimming microorganisms. Phys. Rev. Lett., 103(8):088101, August 2009. Time (s) [3] Jinzhou Yuan, David M Raizen, and Haim H Bau. Gait synchronization in caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A., 111(19):6865–6870, May 2014. [4] Raghunath Chelakkot, Michael F Hagan, and Arvind Gopinath. Synchronized oscillations, traveling waves, and jammed clusters inducedby steric interactions in active filament arrays. Soft Matter, December 2020.

Synchronized swimming: adaptive gait synchronization through mechanical interactions instead of communicaton

Zhuonan Hao, Wei Zhou, Nick Gravish

Separation condition

(a) $\phi_2^+ = 2\pi - \phi_2^-$

(b) $\sin \phi_1^+ < \sin \phi_2^+$

Body oscillation control Each robot has two joints which have angles α_1 and α_2 . The generation of body oscillations are controlled through $\widehat{\mathrm{pg}} 2\pi$ 9 Joint angle (rad) $\pi/2$ $\theta_i = r_i \cos(\phi_i)$ $(\delta_j) + \gamma g(\phi_i, \tilde{\phi}_i))$

a local phase oscillator:

Proprioceptive phase feedback $\tilde{\phi}_i = F(\theta_i, \dot{\theta}_i)$

$$\dot{\phi}_i = \omega \pm \lambda f(\phi_i, \phi_i)$$

 $\dot{r}_i = r_i(\mu - r_i^2)$

Inter-joint regulation

 $f(\phi_i, \phi_j) = \sin(\phi_j - \phi_i - \Delta\phi)$

Proprioceptive feedback

$$g(\phi_i, \tilde{\phi}_i) = \sin(\phi_i - \phi_i)$$

Measured phase

$$\tilde{\phi}_i = \arctan\left(-\frac{\dot{\theta}_i/\omega}{\theta_i}\right)$$

The difference between measured phase and internal phase is used to sense contact interactions among robots. Critically, in the regulation equations there is no robot-robot communication and the feedback only takes into account the phases of the individual robot kinematics.

 π

()

 $\overset{\circ}{\underbrace{}}_{}^{}\pi/2$

 $-\phi_i$

UC San Diego

JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

Synchronization is controlled by proprioceptive gain

Synchronization enhances channel traversal

Channel traversal

Two robots challenged to move through a narrow channel. Relative phase change between the two robots showing:

- in-phase sync at $0 < \gamma < \omega$
- anti-phase sync at $\gamma < 0$ • non-feedback at $\gamma = 0$