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We present a simple microscopic model describing the unique friction behavior of gecko setal arrays as they are
dragged on smooth surfaces. Unlike other solids of high elastic modulus that do not stick under van der Waals
forces alone, the gecko setal arrays do not require a compressive force to display a drag resistance but rather
develop a tensile normal force when they are dragged (J. Experim. Biol. 2006, 209, 3569). We describe this unique
behavior with a microscopic model involving curved beam structures at two length scales: at the spatula level,
thousands of independent curved beams repeat detachment and reattachment, whereas at the seta level, the curved
beam geometry of the seta induces a coupling between the frictional force and the adhesive force that depends on
the angle of contact, therefore allowing easy release when the animal needs it. Our model accounts well for the
dependence of the drag and adhesion forces on the drag velocity and can also explain macroscopic attachment/
detachment cycles of the setal array.

Introduction

Most solids show normal or “Coulomb” friction when moved
relative to one another. In this situation, a compressive load is
necessary to measure a friction force, and the ratio between the
tangential load and the normal load is called the friction
coefficient and is usually a constant value smaller than 1.2

For soft materials however, the contact can be adhesive under
van der Waals forces alone, and it is possible to observe
frictional adhesion for polymer gels, rubbers, or soft adhesives.
In this case, a tangential force is measured with a zero normal
force or possibly with a negative normal force. Hence, the
concept of friction coefficient does not make sense anymore,
and a different description must be used. It is also worthwhile
to note that for these very low modulus materials the motion
parallel to the surface is never steady state but occurs by elastic
instabilities at macroscopic scales.3-6

Gecko attachment systems made of multiple attachment points
display frictional adhesion despite being made of hard materials.1

Furthermore, the adhesive force increases with increasing drag
velocity. This is a key condition to have a stable relative motion
mechanism with an adhesive force (on the other hand, a
decreasing friction with velocity would lead to a stick/slip
motion).7 Although several microscopic models have been
proposed for the adhesive behavior of gecko attachment pads,
they have focused either on the nature of the adhesive forces,8

on the effect of contact splitting on the macroscopic adhesive
force,9 or more recently on explaining the angle dependence of
the adhesive force.10 None of these models has, however,
addressed the dynamic frictional behavior, that is, how the gecko
pad can simultaneously adhere and slip steadily on a surface.
This property is important when the gecko wants to reattach its

foot to a surface and apply a force to move forward or recover
from a fall. The foot will not be immediately immobilized but
rather will be dragged for a short distance with increasing
frictional force. When the gecko wants then to lift its foot, it
peels off the toe instead of dragging it on the surface. This costs
very little energy.

We focus here on this attachment aspect of the gecko foot
and propose a microscopic model describing the process of
friction of a gecko setal array that is consistent with experimental
observations and provides some interesting insights on the
mechanisms by which such a frictional adhesion can work for
materials with elastic moduli much larger than what is required
for spontaneous adhesion.

General Picture

Isolated gecko setal arrays are known to exhibit very unique
frictional/adhesion properties,1 as shown in Figure 1. The key
findings can be summarized as follows:

(A) Sliding motion can occur under negative normal force.
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Figure 1. F| (lateral force) and F⊥ (normal force) versus time plot.1
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(B) When a lateral displacement is applied at a fixed vertical
displacement, both normal and lateral forces initially vary and
even change their signs (compressive to tensile).

(C) The friction force then becomes almost constant in the
steady sliding condition.

Properties A and B are very specific to this system, because
a rigid sliding object normally separates from a substrate under
negative loading and because the normal force does not vary
so much (in some polymeric systems the normal stress changes
under shear, but the effect is not so strong). Therefore, we have
to answer the following questions: why is the sliding motion
maintained under the negative loading condition, and how is
the strong coupling between normal and lateral force generated
in this system?

Moreover, although property C is less important than A or
B, it implies that smooth sliding has to work under a negative
loading. An unusual and difficult task, that is, that the system
can sustain the negative loading and translate its center of
gravity, requires new specific mechanisms.

Let us now address these questions. First, we define motion
at two different length scales to make our discussion clear (see
Figure 2).

•Mesoscopic motion: attachment/detachment of spatulae under
negative loading, and their incoherent motions.

•Macroscopic motion: smooth sliding of the setae under
negative loading.

We assume that the smaller structure such as spatulae works
in a stick-slip manner but has a specific resticking mechanism
from a detached conformation. Also, from experimental results,1

a single seta seems to slide almost smoothly as shown in Figure
1. It is important to note that this classification has to be
precisely made from experimental observations. However, we
base our discussions on these assumptions.

In this paper, we discuss why the setae arrays exhibit such
unique properties. In the following chapters, we discuss the
attachment/detachment mechanisms by introducing the curved
beam geometry and then propose an empirical rate-dependent
detachment model for the tip of the spatulae based on the curved
beam structure. We also try to explain the force space results
of setal arrays by a simple model, and finally we summarize
our results.

Mesoscopic Motion at the Spatula Level: Attachment/
Detachment under Negative Loading and Rate-dependent
Fracture. As we mentioned above, the sliding motion of the
seta has to work under negative loading conditions. Here we
propose an attachment/detachment mechanism for the individual
spatula by modeling it as a curved beam. The attachment and
detachment process of the beam, as we envision it, is schemati-
cally described in Figure 3. To be consistent with experimental
results we specify the following rules: the beam is initially
attached at one end to the seta and free at the other end. In this

configuration, it is undeformed (a). When the spatula is pushed
against the surface, it causes a compressive normal force (b).
When the spatula is dragged along the surface with fixed normal
displacement (c), it is progressively stretched until the adhesive
contact fails (d) and the spatula jumps back to the original
compressed position (e). In steady state sliding, the cycle (b-e)
is repeated. This results in equations that are very similar to
the molecular adsorption/desorption mechanisms proposed by
Chernyak and Leonov11 and discussed by Vorvolakos and
Chaudhury,12 but the mechanism is completely different: it is
the mechanical attachment/detachment process working for even
large objects through van der Waals forces, where thermal
fluctuations are irrelevant, and as we will see later, this
mechanism can maintain sliding friction even under negative
loading.

When both ends are attached (during the drag stage), such a
curved beam has a very useful mechanical property in this
context, that is, the normal and lateral forces are coupled with
each other.

In all generality, force-displacement relationships at the tip
of a curved beam rigidly fixed at the other end can be expressed
by the following equation.

where f| and f⊥ are the lateral and normal forces respectively,
d| and d⊥ are the lateral and normal displacements of the free
tip of the curved beam, respectively, and K is the rigidity matrix
to be determined from the detailed geometry of the beam.

As an illustrative example, we put the values in the rigidity
matrix K for the parabolic curved beam (see Appendix 1), and
imposed displacements at one end. The values are arbitrary in
unit, but the procedure is similar to the experimental ones
imposed to the seta, that is, a compressive vertical preload
followed by a lateral displacement and do this at a given speed.
We obtained the results of Figure 4.

Figure 4 shows that even when we start from a compressed
state, the normal force can become negative (tensile) as we pull
one end laterally as long as the beam remains fixed at the other
end. Of course this cannot occur indefinitely since once the beam
becomes highly stretched, the adhesive contact with the surface
will fail as described in Figure 3. It is important to note here
that this normal-tangential coupling comes from the nonzero
value of the off-diagonal element and also that it is generally
observed for nonlinear beam structure. A more detailed calcula-
tion or optimization with a finite element method is addressed
by Zhao et al. in a companion paper.13

If we now consider that N independent spatulae are undergo-
ing this process in an uncorrelated manner, the macroscopic
force will be N times the time-average force on a single spatula.
To explain the velocity dependence of the force shown in Figure
5, we need to estimate a time on ton and a time off toff, that is,
a characteristic time during which the beam is stretched and a

Figure 2. Schematic of the sliding motion of the gecko setae as we
model it. Note that the setae straighten during forward motion but are
unlikely to stretch.
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characteristic resticking time during which the tip of the now
unstretched or partially stretched spatula can reattach in a
different position on the surface. This principle is similar to
the molecular model of polymer friction.11,12

The stretching time will be roughly the distance required to
fully stretch the beam divided by the sliding velocity. A spatula
is about 1 µm long, 100 nm in diameter, and 200 nm apart. A
reasonable stretching distance would therefore be on the order
of 100 nm. Given the applied velocities in the experiments, ton

should be more than 100 µs (for V < 1000 µm/s). The resticking
time on the other hand should not vary with velocity since it is
related to the beam jumping back to its unstretched position. A
reasonable estimate would be to take the resonant frequency of
the spatula. The resonance frequency for a stiff cantilevered
beam can be obtained from simple beam theory as:

Where D is the diameter, L is the length of the beam, E is its
elastic modulus (1.5 GPa), and F its density (∼1000 kg/m3).
Numerically, for spatulae that are 1 µm long, 100 nm in
diameter, and 200 nm apart, one obtains νR ) 34.3 MHz, giving
a toff value on the order of 0.03 µs.

Therefore, in the experiment conditions we consider, the
resticking time toff is negligible, and the macroscopic tangential
force Fj | and normal force Fj ⊥ can be calculated by the following
equations.

The last but important point that remains to be discussed is the
detachment criterion for the spatulae. If the detachment force
was independent of ton, it is simple to show that the time-
averaged force could only decrease with increasing velocity,
inconsistent with experimental data. This strongly suggests that
the detachment criterion of the spatulae is not independent of
ton but increases as ton decreases, that is, as the stretching rate
of the spatulae increases. Let us examine possible physical
pictures for the detachment criterion.

1. Viscoelastic Rupture Model. In the field of adhesion of
elastomers, it is commonly found that the fracture energy of
van der Waals contacts increases with increasing detachment
velocity.14-17 For elastomers, this effect is attributed to vis-
coelastic dissipative mechanisms acting close to the crack tip
and increasing with velocity. The low velocity extrapolation is
then the thermodynamic value of the work of adhesion. If we
regard the fracture energy as the bond rupture energy for 1
spatula, one can then write

where Gvis(V) is the bond rupture energy per single spatula, G0

is the threshold adhesion energy at vanishingly low detachment
rate, V* is the characteristic velocity where dissipative processes
become important during detachment, and n (0.3-0.6 in rubber)
is an exponent depending on the mechanical properties of the
material. The functional form of eq 7 is attractive since it
produces the type of rate dependence that is experimentally
observed.

2. Plastic Rupture Model. We discuss one possibility to
describe the rate-dependent bond rupture criteria in 1. However,
spatulae are not elastomers but rather are made of �-keratin, a
stiff material analogous to a polymer glass that is not known to
be viscoelastic. A clue comes from the considerable work done
in the area of unlubricated friction of polymer glasses. Polymer
glasses can slide relative to a smooth surface by the sliding of
microscopic contact points due to asperities that can move by
shearing a very localized nanometric layer that is deformed
beyond the yield stress of the polymer.18-21 In the case of the
spatulae, the picture can then be that of the fracture of a single
adhesive contact in mixed mode (shear and tension), involving
local plasticity at the interface between the spatulae and the
surface. An order of magnitude estimate of the plausibility of
this mechanism comes from measurements on individual seta.
Autumn et al. have shown that a single seta can sustain 200
µN in shear. If one assumes ∼500 spatulae per seta, this leads
to a shear force of 0.4 µN/spatula, which is supported by an
area of roughly 0.01 µm2. The average shear stress to be

Figure 3. Attachment/detachment process of a single spatula.

Figure 4. Schematic of the forces acting on the surface as a function
of time during a compression (until t ) 0.5 s) and lateral dragging
motion (from 0.5 s to 2 s) occurring during the initial attachment of a
curved beam. f⊥ is the normal force, and f| is the tangential force.
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transferred to the glass surface by each spatula is then of the
order 40 µN/µm2 or 40 MPa, clearly the order of magnitude of
the yield stress of a molecular solid such as the �-keratin.

The bond rupture criteria of glassy polymers depends clearly
on the strain rate that is applied and increases with strain rate
in a different way as the viscoelastic model that is mentioned
above. In the case of the debonding of the spatulae, one can
then propose that the debonding will occur by plastic yielding
of the adhesive patch. By applying the Eyring model, which
describes thermally activated stick-slip in sliding friction, it
could be written in the form of

Although it is the strain rate dependence of the yield stress that
is classically described by the Eyring model,22 we assume for
simplicity that the energy of detachment of a contact Gpl is
directly related to the yield stress, that is, the deformation at
failure of the contact is not strain rate-dependent.

By using two types of rate-dependent bond rupture criteria and
eqs 1, 5, and 6, we can obtain the expressions for the macroscopic
forces. Detailed calculations are given in Appendix 2.

and

Fitting of experimental data with the two models are shown in
Figure 6. We can see that both rate-dependent rupture criteria fit
experimental results well. It is important to note that the average
normal force (i.e., time average of normal force of a single spatula)
becomes negative even when we initially applied compressive
displacement.

Macroscopic Motion at the Seta Level: Friction-Adhesion
Coupling. Other than the above-mentioned steady state drag
experiments, Autumn and co-workers have performed a series
of experiments to study the transient frictional adhesion proper-
ties of setal arrays.1 According to their results, when the setal
arrays are pushed onto the glass substrate, the normal force
becomes compressive, but the loading direction turns into
negative (tensile) as they are pulled laterally. This means the

friction and adhesion are coupled with each other even at this
level (Figure 7).

This transient mechanical property can be understood with
the same idea as that proposed for spatulae. First, we impose a
linear force-displacement relation for setal arrays,

The rigidity matrix of seta Kseta is assumed to have the following
matrix elements, according to the parabolic curved beam model
calculated in Appendix 1.

We also put the displacement history for the setal arrays.

Here we assumed that there is some lateral slippage during the
compression loading stage, causing the frictional force to relax.
This is supported by the experimental observation that dragging
the array against the curvature of the seta does give rise to
regular friction and not frictional adhesion.

The calculated force space is shown in Figure 8.
It is important to note that there is some difference between

the model structure and the actual one. By applying finite
element calculations, it is possible to reproduce experimental
force space or even optimize the structure to get desired
frictional/adhesion properties, but this would be beyond the
scope of the paper.

Discussion

Clearly, the model presented here still contains a certain
number of assumptions that are not proven by experiment, but
some of the features that we propose can have important
implications for the design of future synthetic adhesives.

We feel that two key points deserve to be discussed. First,
the reattachment mechanism of the individual spatula is the first
important aspect. This is clearly a key microscopic feature
holding the whole model together. In fact, as described in Figure
3, when the highly stretched and straight spatula is detached
from the surface, it has to spring back to an equilibrium (bent)
position and reattach instantly. The spring constant of the spatula
may help in this mechanism since the slight compressive
displacement imposed in the beginning means that the detached
spatula springing back to equilibrium will touch the surface still
in tension, and this will cause as slight dragging force that may
be what is needed to instantly reattach. The fact that this
mechanism is completely inactive in the other direction supports
this idea.

The other important point is the rate dependence of the
detachment force of the spatula. This feature is necessary to
obtain a friction force increasing with velocity under adhesive
conditions. This velocity dependence can only mean that the
spatula is more stretched before detaching when it is stretched
faster. Since there is no evidence of a viscoelastic or plastic
behavior of the keratin making the spatulae, the most plausible
idea is that the detachment involves dissipative mechanisms that

Figure 5. Nornal/Shear force vs drag velocity of a single seta.
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increase with separation velocity. Only microscopic experiments
on a single spatula can resolve this point.

The final point worth discussing is the question of the stable
friction (without stick/slip). This is a key feature that allows
the gecko to run even when his feet are slipping. In normal
Coulomb friction it is quite common to have this behavior, and
it is related to the stiffness of the contact relative to the stiffness
of the whole moving part. However, to obtain frictional adhesion
with synthetic materials, the stiffness of the material itself has
to be so low that it becomes impossible to have no stick/slip
friction. The reason that this is possible in the setal arrays may
be the hierarchical stiffness of the device. The stick-slip
dissipative motion is confined to the spatula level, and the much
stiffer seta level moves smoothly and stores a minimum amount
of elastic energy during motion, thereby avoiding macroscopic
slip. Such a hierarchical structure with a soft layer in contact
with the surface and harder layer as backing has been shown to

work in the much simpler pressure-sensitive-adhesives to
optimize adhesive properties on weak substrates such as
polyolefines23 and may be the future of new, optimized adhesive
materials.

Summary

In this paper, we have proposed a micromechanical model
for the frictional adhesion mechanism observed for a setal array,
taken from the foot of a gecko. This mechanism is remarkable
since it allows steady state frictional motion under a tensile
normal force, a mechanism that cannot yet be reproduced with
our knowledge in synthetic materials.

The mechanism is based on a multiscale structure that
combines a stick-slip motion at the spatula level with a curved
beam structure that naturally couples an applied friction force
with a normal force.

This attachment/detachment motion of the curved beam can
maintain the macroscopic sliding motions under the negative
loading, and we succeeded in providing qualitative explanations
for the remarkable drag velocity dependence of the setal arrays
that ensure a stable adhesion without catastrophic slippage. This
feature is probably very useful to the gecko, which attaches
probably more by frictional adhesion than by simple normal
contact adhesion.

It is important to note that the frictional adhesion mechanism
relies on two key features of the contact between the spatulae
and the surface, which are the directionality of the contact (sticks
when dragged in one direction but not in the other) and a rate
dependence of the detachment energy of an individual spatula.
Both features have not been yet proven by experiment but are
consistent with experimental data.

We also found that the introduction of a curved beam structure
can easily reproduce the transient frictional adhesion experi-
ments of the setal arrays by coupling the parallel force with the
normal force and is likely to be responsible as well for the easy
detachment at the 30° angle observed for the setal arrays.

This model suggests then that the use of an asymmetric curved
geometry for the structures will be a very useful feature to
incorporate in synthetic gecko-like adhesives, which have so
far mainly focused on straight pillars.

Appendices

Appendix 1.

Derivation of Rigidity Matrix for a Simple Curved Beam.
In this appendix, we calculate the rigidity matrix of a simple
curved beam shown in Figure A1. The torque M applied in the
cross section A(x, z) is expressed as

where F|,F⊥ are the applied horizontal and vertical force,
respectively.

Figure 6. Comparison of experiment and theory (viscoelastic rupture
model and plastic rupture model). The fitting parameters we used are
f|,1 ) 0 N, N(K|,|G0/2)1/2 ) 0.03 N, V* ) 100 µm/s, n ) 0.45, N f⊥ ,1 )
0.02 N, [K⊥ ,|

2 G0/(2K|,| f⊥ ,0
2 )]1/2 ) 0.8 for the Viscoelastic rupture model

(eq 7) and f⊥ , 1 ) 0 N, Nf|,1/2 ) 0.03 N, 2K|,|G0/f|,12 ) 1 , V* ) 600
µm/s, N K⊥ ,| f|,1/2K|,| ) -0.025 N for the Plastic rupture model (eq 8).

Figure 7. Force space measured by experiments.1

Figure 8. Calculated values of F⊥ vs. F| obtained from the curved
beam model. The arrows represent the time variable during the cycle
of loading/dragging/unloading realized experimentally and represented
in Figure 7.

M(x) ) -zF| - xF⊥ ) -
√Lx
2

F| - xF⊥ (A1.1)

Figure A1
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Strain energy can be calculated by the following
equation

where L, E, and I are the length of the beam along x direction,
Young’s modulus, and the second moment of area, respectively.

From the strain energy function and the Castigliano’s theorem,
we get displacements.

and

To express A1.3 and A1.4 in a matrix form,

Finally, we obtain the force-displacement relationship.

This model gives

K ∝ [5 -3
-3 2 ]

Appendix 2.

Calculation of the Normal/Frictional Force. Here we show
the detailed calculation for the average force Fj | and Fj ⊥ .

From Force-Displacement relationship (eq 1), we get expres-
sions for lateral/normal force and elastic energy.

Now we consider the situation where we initially impose the
normal displacement d⊥ ,0 (at this stage, the normal force is
compressive), and then we drive the substrate laterally at a
constant velocity V. As illustrated in Figure A2, we assume that
the lateral force just after resticking (stage 1) is zero and that
the spatula detaches from the substrate at the maximum
extension (stage 2). The stored elastic energy is calculated as
follows.

where ∆d| ) d|,2 - d|,1 is the lateral elongation of the spatula
and f|,1 is the lateral force just after resticking. We also assume
the energy balance (i.e., stored elastic energy balances the
dissipation),

then we obtain the following relation.
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K⊥ ,| K⊥ ,⊥ ] [ d|
d⊥ ]

(A2.3)

Figure A2
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Equation A2.6 implies that the maximum stretch is dependent
on the drag velocity.

From ton ) ∆d|/V and eqs 5 and A2.6, we get

and finally we obtain eq 9.
For the normal force, we can calculate in the same way using

eqs 6 and A2.6,

where f⊥ ,1 and f⊥ ,min are initial and final (minimum) normal
forces, respectively, and finally we get eq 10.
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