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Flapping-wing insects, birds and robots are thought to offset the high power
cost of oscillatory wing motion by using elastic elements for energy storage
and return. Insects possess highly resilient elastic regions in their flight anat-
omy that may enable high dynamic efficiency. However, recent experiments
highlight losses due to damping in the insect thorax that could reduce
the benefit of those elastic elements. We performed experiments on, and
simulations of, a dynamically scaled robophysical flapping model with an
elastic element and biologically relevant structural damping to elucidate
the roles of body mechanics, aerodynamics and actuation in spring-wing
energetics. We measured oscillatory flapping-wing dynamics and energetics
subject to a range of actuation parameters, system inertia and spring
elasticity. To generalize these results, we derive the non-dimensional
spring-wing equation of motion and present variables that describe the
resonance properties of flapping systems: N, a measure of the relative influence
of inertia and aerodynamics, and K̂, the reduced stiffness. We show that
internal damping scales with N, revealing that dynamic efficiency monotoni-
cally decreases with increasing N. Based on these results, we introduce a
general framework for understanding the roles of internal damping, aerody-
namic and inertial forces, and elastic structures within all spring-wing systems.
1. Introduction
Flapping-wing flight is one of the most energetically demanding modes of loco-
motion in nature and in engineered flying robotic systems. Actuators must
provide power to overcome aerodynamic forces on the wings, generate inertial
forces for oscillatory acceleration and deceleration, and counteract internal
energy losses from imperfect power transmission [1]. If an oscillating wing is
coupled to an elastic element such as a spring, the kinetic energy from the
wing could be stored as elastic energy at the end of the wing-stroke and
returned after stroke reversal. Many insects [1–5], birds [5,6] and even bats
[7] have spring-like elements in the form of elastic materials in their thoraxes,
muscles and tendons that may aid in reducing the energetic demands of flap-
ping flight and improving flight efficiency (resonance) (figure 1a). However,
the evidence that insects and birds operate near resonance largely relies on
corelational observations of wingbeat frequency and wing inertia [9,10], or
energetics arguments comparing metabolic and aerodynamic power [5,11,12].

If animals do rely on elastic energy storage for improved efficiency, then
there are implications for the dynamics and energetics of those systems. One
major example is that, to benefit from a spring, flapping wings must be actuated
at a specific resonance frequency governed by the spring stiffness, body mor-
phology and other factors such as aerodynamics and damping. Flapping at a
higher or lower frequency leads to inevitable reduction in flight performance.
Early experiments on the relationship between wingbeat frequency and wing
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Figure 1. (a) Flapping-wing insects have elastic components in their thorax and wing hinge which can potentially act as spring elements to reduce the energetic
demands of flapping-wing flight. The left side of the image in (a) shows an illustration of the muscle, thorax wall, and wing hinge of an insect. The right side of the
image interprets it as a spring in parallel with the actuation source and a spring in series with the actuator, with aerodynamic and inertial forces that act on
the rotating wing. (b) Weis-Fogh introduced a convenient way to visualize the relative magnitudes of torque acting on the wing hinge by normalizing all
values to the peak aerodynamic torque. The units of both axes are dimensionless. The angle and velocity of the insect wing over the downstroke are shown
by the lines above the plot. Image in (a) adapted from [8].
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inertia provided compelling evidence that insects do oscillate
their wings at resonance [9,10]. However, these experiments
relied only on the manipulation of wing inertia (without
accompanying measurements of thorax stiffness) and thus
do not provide direct comparison of the spring-wing system’s
resonant frequency and the wingbeat frequency. Recently,
there has been some effort to measure insect thorax elasticity
and frequency response [13], but experimental limitations
leave room for questions about whether insects are, in fact,
flapping at a resonant frequency.

The impact of operation on or off resonance is directly
related to how much a particular flapping-wing system
benefits from the inclusion of a spring. A flyer with small
wing inertia would have less excess kinetic energy to store
and return in a spring than one with large wing inertia, but
also would be less impacted by changes in wingbeat fre-
quency. The question of where insects fall on this spectrum
was first addressed by Weis-Fogh in his analysis of flapping
flight efficiency [12]. He introduced the dynamic efficiency (η)
as the ratio of aerodynamic work to the combined inertial and
aerodynamic work, which serves as a measure of how much
energy is expended on useful aerodynamic work versus was-
teful inertial work. Weis-Fogh provided an analysis of the
scaling of η in the absence of elasticity by introducing the
non-dimensional variable N, which is the ratio of peak iner-
tial force to peak aerodynamic force over a wing-stroke. In
flapping-wing flight without springs, η was shown to mono-
tonically decrease with increasing N, thus requiring larger
energy input at larger N to sustain flight. In subsequent
text, we refer to N as the Weis-Fogh number to reflect his
contributions to flight energetics.

Examination of the sinusoidal motion of a wing in the
absence of elasticity reveals two sources of reaction force:
inertial and aerodynamic forces. During a half-stroke of a
wing, the inertial force associated with wing acceleration
is at a maximum when the wing position is at its point of
reversal, and inertial force decreases linearly with wing
position and reaches zero at mid-stroke (figure 1b). At rever-
sal, the wing speed is zero and thus the aerodynamic force at
this point is zero, while at mid-stroke the aerodynamic force
is maximum. Plotting these forces as a function of wing pos-
ition (figure 1b) and normalized by peak aerodynamic force
reveals that the inertial force has a maximum value of N, the
Weis-Fogh number. Furthermore, the integration of these
forces over the wing displacement provides the total inertial
and aerodynamic work. As can be seen in figure 1b an ideal
spring exactly matched to the inertial force of the wing
would exactly cancel out the inertial work over a cycle in a
parallel spring-wing system. In such a case the dynamic
efficiency of the system would be η = 1 and the system
would be operating at resonance. However, it is less clear
how internal damping, frequency modulation, and different
spring arrangements modulate the dynamic efficiency.

The primary mechanism of elastic energy storage in
insects is resilin, a highly resilient elastic material first ident-
ified in patches of the locust exoskeleton, discovered and
characterized in the 1960s by Weis-Fogh [3–5] (and sub-
sequently identified in many other arthropods). It was
shown to return greater than 97% of stored elastic energy,
suggesting that insects have resilient components within
their thorax that can facilitate efficient energy exchange and
return. Thus, the historical choice not to include internal
losses in the computation of dynamic efficiency appears to
be a simplification based on the assumption that the losses
due to aerodynamic forces are significantly larger.

However, recent experiments to characterize the energy
storage and return in the hawkmoth (Manduca sexta) thorax
have also demonstrated that small but significant energy
loss occurs from internal structural damping [1]. Similar
structural damping was also observed in cyclic oscillation
of cockroach legs [14], possibly suggesting a general character
of energy loss in exoskeleton deformations. Structural damp-
ing is a form of energy loss different from the more familiar
velocity-dependent viscous damping. Materials that are
structurally damped exhibit energy loss that is frequency
independent and is instead governed by oscillation ampli-
tude and elastic coefficient [15]. This is consistent with the
interpretation of structural damping as a result of internal,
microscopic friction that is not dependent on velocity.
While the presence of highly elastic resilin suggests
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significant potential benefits from elastic materials, internal
damping may preclude the energetic benefits of elasticity in
spring-wing systems.

Despite the more than 60 years of focus on resonance in
insect flight, previous efforts at modelling or measuring
spring-wing resonance in insects have fallen short by:
(i) assuming that quasi-steady assumptions on aerodynamic
forces in spring-wing resonance are valid, (ii) not including
the effect of energetic losses from imperfect elasticity and
(iii) focusing predominantly on the contributions of parallel
system elasticity while disregarding contributions or limit-
ations of series-elastic elements. Most importantly, we lack
a common modelling and analysis framework to compare
and contrast the energetic benefits of resonance across insects
and man-made systems such as robots. Inspired by the orig-
inal calculations of Weis-Fogh, we seek in this paper to
develop a set of equations that govern the dynamics of paral-
lel and series spring-wing systems using non-dimensional
parameters that allow for comparative examination.

In experiments, we will measure how unsteady aerody-
namic effects, specifically added mass and wing-wake
interaction, influence the resonant behaviour of a flapping
wing at hover. In order to achieve this, we compare simu-
lations of a spring-wing oscillator subject to quasi-steady
aerodynamic forces to a robophysical model of a flapping
wing with known mechanical parameters subject to real
fluid forces. Here we draw upon the work of van den Berg
& Ellington [16], Sane & Dickinson [17], and others to use a
flapping-wing robot that is dynamically scaled to that of
flying insects. Unlike those studies, we do not prescribe the
wing kinematics, instead using an elastic element in series
between the wing and motor to observe resonant dynamics
and emergent wing kinematics produced by varying actua-
tion parameters. From our experiments, we will develop a
model to understand how structural damping influences
spring-wing dynamic efficiency using non-dimensional
parameters. These efforts will provide a general understand-
ing of how springs, wings, and body mechanics converge to
enable energy efficient flapping motion as a function of
morphology and wing kinematics.
2. Theoretical preliminaries: assumptions and
motivation

To contextualize our study of spring-wing dynamics we first
seek to outline the basic concepts of spring-wing systems.
We will derive the equations of motion in the presence of
aerodynamic and internal damping forces. We conclude
this section with a non-dimensional representation of the
equation of motion which produces two important
parameters in spring-wing systems.

2.1. Undamped parallel and series wing-spring systems
The anatomies of flapping-wing animals feature a wide range
of elastic element configurations that contribute to their flap-
ping-wing dynamics. These arrangements can be expressed
as combinations of springs in series and parallel with a
moving inertial element, the wing (figure 1a). In both cases,
the wing interacts with a time- and history-dependent non-
linear force from the surrounding fluid. To simplify the
modelling of spring-wing systems, we consider the system
as a one degree of freedom rotational joint (to emulate the
wing hinge), where the joint angle θ is the wing angle
along the stroke plane. If we neglect internal damping, the
equation of motion for a parallel spring-wing system about
this joint is

It€u(t)þ kpu(t)þQaero(t) ¼ Tm(t), (2:1)

where It is the total system inertia, kp is the stiffness of the par-
allel elastic element, Qaero is the aerodynamic drag torque and
Tm(t) is the time-dependent torque applied to the wing. In the
parallel configuration, the spring undergoes the same displa-
cement as the wing and the muscle (actuator) acts directly on
both the mass and spring. Nearly all spring-wing modelling
of the insect thorax [12] and micro-aerial vehicles [18–22] has
considered the parallel spring arrangement where muscle
(actuator) is in parallel arrangement with the spring.

In a series-elastic spring-wing system, a spring is placed
between the actuator and the wing. Series elastic elements
are well studied in vertebrate biomechanics as muscle–
tendon units where a tendon is placed between the muscle
and output [23]. Series elastic elements in flapping-wing
flight may similarly be found in the muscle tendon units of
birds [6,24]. In insects, series elasticity can arise from elastic
tendons [25], elasticity in the wing hinge [4] or within the
flight power muscle [26]. For simplicity of experiment
design and to examine the differences between series and
parallel systems, we analyse the series elastic spring-wing
configuration. The equation of motion for a simple series
elastic system may be written

It€u(t)þQaero(t) ¼ ks(f(t)� u(t)), (2:2)

where the force acting on the wing arises from the displace-
ment of input angle ϕ(t) relative to the wing angle θ
(figure 2a). The difference between the angles is the deflection
of the series spring with stiffness ks. When the system is at
steady state (hovering), the series and parallel cases can be
treated equivalently by rearranging equation (2.2) to reflect
the parallel configuration:

It€u(t)þ ksu(t)þQaero(t) ¼ ksf(t): (2:3)

2.2. Aerodynamic drag torque and added mass inertia
The wing experiences an aerodynamic resisting torque, Qaero,
that opposes wing movement through the fluid. To make
analysis of this system tractable, we will use a quasi-steady
blade element estimate of aerodynamic torque consistent
with previous quasi-steady methods for spring-wing systems
[12] and micro-aerial vehicles [18–22]. Following the standard
conventions for the quasi-steady blade element method, we
express the aerodynamic drag torque

Qaero ¼ 1
2
rCD(a)

R5

AR
r̂33|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

G

j _uj _u

¼ Gj _uj _u: (2:4)

The variable Γ is the drag torque coefficient and is a
function of wing geometry (span, R; aspect ratio, AR; non-
dimensional radius of the third moment of wing area, r̂3);
pitch angle, α; drag coefficient, CD(α) and fluid density, ρ.
Since we are considering aerodynamic torque about the wing
hinge, Qaero has units of [N m] and Γ has units of [N m s2].
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In addition to aerodynamic torque, the acceleration of a
wing within a fluid leads to an additional inertia; an
‘added’ or ‘virtual’ mass, as it is sometimes called [27]. We
use a method from [27] for modelling the mean added
mass inertia, IA (see electronic supplementary material,
§11.1). The total inertia is computed as It = Isys + IA, where
Isys is the inertia of the wing and wing transmission. In the
insect flight system, the wing hinge acts as a mechanical
transmission, converting linear muscle actuation to angular
wing motion. It is possible that additional inertial terms
from the reflected inertia of the oscillating muscle and
thorax may be important. However, there is little known
about the specific motion and inertia of the wing hinge trans-
mission and the role of muscle and thoracic inertia, so we will
disregard their effects in this paper.

2.3. Structural damping in the insect thorax
Recent experiments to measure the damping response of
the hawkmoth (Manduca sexta) thorax [1] and cockroach (Bla-
berus discoidalis) leg joints [14] have both identified structural
or hysteretic damping as the dominant source of energy loss.
Consistent with these observations, we seek to consider the
effects of structural damping on spring-wing system
dynamics. Structural damping is a common source of
energy loss in biomaterials [28] that differs from viscous
damping in that there is no velocity dependence in the struc-
tural damping force. For general oscillatory motion, the
structural damping force can be included as a modification
to the spring constant, K = k(1 + iγ), where k represents
either the parallel or series spring. The coefficient γ is the
structural damping loss factor [15] which has been found to
be γ = 0.2 for cockroach leg joints [14] and γ = 0.1 for the
hawkmoth thorax [1]. For constant sinusoidal motion at a
single frequency, ω, the structural damping force can be rep-
resented as a viscous-like force with a coefficient that scales
with frequency

Qstruct ¼ gk
v

_b, (2:5)

where the angular velocity _b is the relative speed of spring
compression (for parallel systems _b ¼ _u and series systems
_b ¼ ( _f� _u)). The presence of ω in the denominator makes
the structural damping force frequency-independent, unlike
typical viscous damping (see electronic supplementary
material, §11.2, for derivation).

2.4. An organizational framework for spring-wing
systems

In this final section of the motivation, we introduce a set
of non-dimensional variables that govern general spring-
wing dynamics. As discussed in the Introduction, the
Weis-Fogh number N is the ratio of maximum inertial force
compared to maximum aerodynamic force over a cycle.
Assuming sinusoidal wing motion with amplitude θ0 and fre-
quency ω, the maximum inertial torque is Itθ0ω

2 and
maximum aerodynamic torque is Gu20v

2 resulting in the
Weis-Fogh number

N ¼ It
Gu0

: (2:6)

This quantity should dictate how important a role spring
elements can play in energetic efficiency at hover. For N < 1,
aerodynamic forces dominate and kinetic energy may be
fully dissipated into the surrounding fluid over each wing
stroke; no elastic storage is needed. However, for N > 1,
excess kinetic energy from the wing can be recovered by a
spring. Observations from biological and robotic flapping-
wing flyers indicate that N roughly varies between 1 and
10 for a broad range of insects [12].

In order to compare across insect species, we non-dimen-
sionlize the dynamics, assuming the wing oscillates
sinusoidally at a frequency ω, and with amplitude θ0. We
begin with the full dynamics equation for the parallel
spring-wing system including structural damping:

It€uþ kpuþ Gj _uj _uþ gkp
v

_u ¼ T(t): (2:7)

We introduce dimensionless wing angle q and dimension-
less time τ and substitute into equation (2.7) (see electronic
supplementary material, §11.3). We arrive at the following
dimensionless equation of motion for the spring-wing system:

€qw þ K̂ pqw þ gK̂ p _qw þ 1
N
j _qwj _qw ¼ T̂ p(t), (2:8)
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where we have defined the reduced parallel stiffness,

K̂ p ¼
kp
Itv2 , (2:9)

and the Weis-Fogh number, N, is in the coefficient of the aero-
dynamic torque. The normalized torque in the parallel system
is

T̂ p(t) ¼
Tp(t)
Itu0v2 : (2:10)

Performing a similar substitution for the series system we
arrive at the equation below:

€qw þ K̂sqw þ gK̂s _qw þ 1
N
j _qwj _qw ¼ T̂s(t), (2:11)

where the normalized torque in the series system is

T̂s(t) ¼ K̂s

u0
f(t)þ g

v
_f

� �
: (2:12)

We provide a full derivation of these equation in the elec-
tronic supplementary material, §11.3.

Through the change of variables in the parallel and series
spring arrangements we have arrived at two nearly identical
non-dimensional dynamics equations in equations (2.8) and
(2.11). The differences between the series and parallel systems
in this form are all contained in the actuation variables, T̂s

and T̂ p. Thus, while the forced actuation of these systems
may result in different dynamics, the similar structure of
the non-dimensional dynamics equations indicates that in
both systems three variables likely govern the behaviour: N,
K̂ and γ. As an exemplary demonstration of this, if either
the series or parallel system is driven to steady-state oscil-
lation and then the external actuation is turned off (T = 0 or
ϕ = 0), both equations (2.8) and (2.11) become equivalent.
The objective of this paper is to seek to understand how N,
K̂ and γ influence dynamic efficiency and resonance of a
simple series spring-wing system.
3. Experimental and numerical methods
3.1. Robophysical experiment design
We developed an experimental spring-wing system to
study flapping-wing behaviour in the context of realistic
fluid forces (figure 2). The quasi-steady modelling presented
in the previous section greatly simplifies the unsteady,
history-dependent aerodynamic phenomena involved in flap-
ping flight. A dynamically scaled physical wing serves as a
reference against which we can evaluate the performance of
the quasi-steady model. The system consists of a servo
motor capable of accurate position control, a moulded sili-
cone torsional spring with linear elasticity and structural
damping, and a simple fixed-pitch wing element attached
to a rotary shaft and submerged in a 115-gallon plastic tank
filled with water (30" × 30" × 30", Chem-Tainer). The tank
was selected to be large enough to minimize fluid inter-
actions with the side walls, floor and water surface. The
wing is situated near the centre of the tank, such that
the wing is always at least 10 wing-chord-lengths from the
walls and floor and 5 wing-chord-lengths from the surface
of the water. This is consistent with other studies of flapping
wings that use water as a working fluid [29–31]. See
electronic supplementary material, §11.4, for photos of
components and further details.

3.1.1. Motor selection and system friction reduction
A high-torque servo motor (Teknic Clearpath SDSK) was
chosen to drive the system under closed loop angular position
control. The servo is able to provide substantially more torque
than that experienced by the wing in the fluid, effectively
decoupling the motor and wing dynamics. We monitor the
motor and wing angle using two optical encoders (US Digital,
4096 CPR). To reduce the influence of friction on the wing
motion, we used two radial air bearings (New Way, S301201)
which resulted in negligible bearing friction. The shaft was
supported vertically by an axial thrust bearing, which did
contribute a small amount of friction.

3.1.2. Reynolds number scaling
To ensure that we match the aerodynamic behaviour of small
insect wings we chose experimental parameters to dynami-
cally scale our system. Consistent with previous dynamically
scaled experiments [17,32], we sought to maintain a Reynolds
number in the range of that of small flapping-wing insects,
Re = 100–10 000. We define Reynolds number based on stan-
dard methods, using wingtip velocity as the flow speed and
wing chord as the characteristic length [32]. We choose water
as aworking fluid (ρ = 997 kg m−3) and choosewing geometry
(rectangular, 10 × 3.6 × 0.5 cm) and a range of actuation par-
ameters (10–64 deg amplitude, 0.5–4.1 Hz frequency) where
the resulting wing kinematics had Re≈ 103− 104. Note that
since the wing amplitude is an emergent property of the
system due to the series spring configuration, so too is the
Reynolds number of an individual test.

3.1.3. Weis-Fogh number scaling
In order to achieve a wide range of Weis-Fogh number
(equation (2.6)) in experiment, we must be able to adjust the
ratio of peak inertial torque to peak aerodynamic torque. We
chose to keep the drag torque coefficient Γ constant, so we
vary N by changing wing inertia and wing amplitude θ0.
Wing inertia It was varied by adding acrylic and aluminium
discs to the wing shaft, leading to total inertias of It = [10.5,
15.9, 23.2] × 10−4 kg m2. Our experiments resulted in a range
of N between 1 and 5 when operating at the resonant
frequency, consistent with many insects [12].

3.1.4. Aerodynamic calculations
We used a rigid rectangular wing with a fixed vertical pitch
(α = 0), which simplifies modelling and motor control, and
eliminates any energy storage and return from a flexible
wing. The drag torque coefficient for a rectangular wing
from equation (2.4) is Γ = 1.07 × 10−3 kg m2, where the coeffi-
cient of drag is constant at CD(0) = 3.4 (taking this value from
[17]). We also compute added mass inertia, IA, for a calculated
value of 3.465 × 10−4 kg m2 (see electronic supplementary
material, §11.1, for derivation).

3.1.5. Silicone spring fabrication and evaluation
We used custom fabricated silicone torsion springs for the
series spring element (figure 3a). Silicone was chosen because
it can be cast into custom shapes and has a linear elastic
response over large strain [33]. The springs were designed
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with a cylindrical profile with flanges on each end to facilitate
coupling to the motor and wing shafts (figure 3a). Detailed
information about the design and fabrication process may
be found in electronic supplementary material, §11.6.

We used three spring designs with torsional stiffness
values of Ks ¼ [0:163, 0:416, 0:632] Nm rad�1. Figure 3
shows the results of experiments to characterize the spring
mechanical properties. We subjected springs to both cyclic
and static loading conditions (figure 3a,b) to measure their
elastic and damping properties. The spring torque response
was linear over the range of angles tested (figure 3b,c) with
stiffness values that are consistent with the predicted tor-
sional stiffness (figure 3d ). In dynamic testing, we observed
a small amount of hysteresis in cyclic loading experiments
indicating the presence of damping within the spring
(figure 3b). There is evidence that silicone rubber has a com-
bination of viscous and structural damping [34,35], so we set
out to test whether a viscous or structural model fits best. Fol-
lowing a similar procedure as [1], we oscillated each spring
sinusoidally across frequencies between 1Hz and 10Hz
and amplitudes of 10, 20 and 30 degrees. We measured the
angle–torque relationship during these tests and fitted a vis-
cous and a structural damping model to the data for each
spring. We expected that the model that fitted best would
have the least variation in the fit coefficients across the
range of frequencies. We computed the mean and standard
deviation of the fit coefficients across the range of frequencies
and found the standard deviation of the coefficients as a per-
centage of the mean coefficient. The standard deviations in
the viscous model coefficients were 74.8%, 83.2% and 62.1%
of the mean for springs K1, K2 and K3, respectively, whereas
those of the structural model were only 11.7%, 6% and 22.3%,
respectively. Therefore, we chose to use the structural model
to model the damping, with the knowledge that the true
damping is more complex but outside the scope of this
paper. We measured the structural loss moduli shown in
figure 3e. For comparison, the loss modulus is γ = 0.1 in
hawkmoths [1] and γ = 0.2 in the legs of cockroaches [14].
3.1.6. Actuation and data acquisition
Each experiment consisted of driving the motor angle with a
specified amplitude and frequency, ϕ = ϕ0sin(2πft). We varied
input amplitude across f0 = [10–65] degrees, in increments of
5 degrees and frequency across f = [0.5− 4] Hz in increments
of 0.2 Hz. Digital step and direction signals were used to
set the angular position trajectory of the Clearpath servo.
Each test was run for 30 s, during which encoder position
readings were recorded from both the motor and wing by a
NI PCIe board (6323 Multifunction IO Device), sampled at
1 kHz. Encoder readings were saved as text files in MATLAB

and processed.
3.2. Simulation
We developed numerical simulations that modelled the par-
allel and series configurations of the spring-wing system
based on equations (2.1) and (2.2). The parameters of the
simulations were based on measured and calculated par-
ameters from the experiment. Simulations were performed
in MATLAB using the ODE45 numerical integration function.
The integration algorithm performs an adaptive step integration
with absolute and relative error tolerances set at 10−3 and 10−6,
respectively.
3.3. Data analysis
We performed identical analysis of both simulation and
experimental data. We collected wing and motor angle
data, computed wing and motor angular velocity, and
found the amplitude, frequency and relative phase of each
by fitting the data to functions θ(t) and ϕ(t), respectively:

f(t) ¼ fo sin (vt) (3:1)

and

u(t) ¼ uo sin (vtþ c): (3:2)

See electronic supplementary material, §11.7, for details.
In order to identify the resonant peak, we define a non-

dimensional term, kinematic gain, which is the ratio of
motor angle amplitude and wing angle amplitude:

GK ¼ uo
fo

: (3:3)

For a resonant system, kinematic gain is maximum at the
resonant frequency, ωr (figure 4a,b). We also compute
the quality factor of the oscillator dynamics, Q, using the
following definition:

Q ¼ vr

Dv
, (3:4)

where ωr is the resonant frequency and Δω is full width at half
maximum. The quality factor is a metric of the sharpness of
the resonant peak: high Q means kinematic gain GK drops
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off as ω moves away from the resonant frequency, while low
Q means GK changes slowly with varying ω.

In order to identify ωr for a set input amplitude exper-
iment, we locate the frequency that maximizes kinematic
gain. We fit a fifth-order polynomial to the 12 points closest
to the peak measured GK to get a smooth approximation of
the resonance curve. The maximum value of the polynomial
is the peak gain, and the frequency corresponding to it is the
resonant frequency. When reporting N, dynamic efficiency,
etc. ‘on resonance’, we use the experimental configuration
with a frequency closest to the resonant frequency. As a
result, some nominally resonant points are not exactly on
the resonant peak, but may be off by as much as 0.1 Hz.

We use the position measurements, their derivatives, and
the known mechanical parameters of the system to estimate
the torques on the system: aerodynamic, inertial, elastic,
motor and structural damping.

Taero(t) ¼ Gj _u(t)j _u(t), (3:5)

Tinert(t) ¼ I€u(t), (3:6)

Telast(t) ¼ �Tmotor ¼ ks(f(t)� u(t)) (3:7)

and Td(t) ¼ ksg
v

( _f(t)� _u(t)): (3:8)

Note that we compute the equivalent non-dimensional tor-
ques and kinematics using the terms defined in equations
(2.8) and (2.11).

Lastly, we compute the dynamic efficiency of the oscil-
latory motion. Weis-Fogh’s definition of dynamic efficiency
from the introduction neglects elasticity and internal damp-
ing, but for our purposes we need dynamic efficiency to
take into account aerodynamic, inertial, elastic and damping
work. A simple way of doing so is to define the dynamic effi-
ciency as the ratio of aerodynamic work to total work done
by the actuator:

h ¼ Waero

Waero þWinert þWelast þWd

¼ Waero

Wtot
(3:9)

over a stroke (or equivalently a half-stroke). To calculate the
aerodynamic and total work in experiment we use the
following equations:

Waero ¼
ðuo
�uo

Taero du (3:10)

and

Wtot ¼
ðuo
�uo

R(Tmotor) du: (3:11)

Note that in the motor work integral R(x) is a rectification
function defined as R(x) = x for x > 0 and R(x) = 0 for x < 0.
This rectification function accounts for the fact that negative
mechanical work in insect flight muscle does not contribute
significantly to metabolic energy expenditure [12,36].
4. Results
4.1. Kinematic gain varies with actuation and system

properties
We performed 3249 tests with varying input parameters
(amplitude and frequency) and mechanical system par-
ameters (spring stiffness and inertia) and measured the
emergent wing kinematics (figure 5). Results for the nine
inertia and stiffness combinations are shown as heatmaps
with colour indicating kinematic gain. The arrows on the
right and top of the figure denote the directions of increasing
stiffness and inertia, respectively.

For all stiffness and inertia combinations, we observed
that the peak GK occurred at the lowest actuation amplitudes.
At low amplitudes, aerodynamic damping is minimized
and less energy is lost to the surrounding fluid, allowing
for higher kinematic gain. The maximum kinematic gain
increased with increasing system inertia in all cases, reaching
a maximumwhen the system is a combination of a soft spring
and high inertia (bottom right corner).

The resonant frequency decreased as the motor amplitude
(and thus the emergent wing amplitude) increased. The
dashed purple line in figure 5 shows peak kinematic gain
for each motor amplitude. This decrease in resonant fre-
quency is consistent with simulation predictions shown as
solid black lines in figure 5. We discuss this model in the
first discussion section below.
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4.2. Flapping resonance with quasi-steady
aerodynamics

Following the experiments, we sought to see how much of
the observed dynamics is predicted by the simplified, quasi
steady equations of motion described in §2. The real aerody-
namic loads on the wing are time- and history-dependent, so
it is not clear to what degree those unsteady loads affect the
resonance properties of the system at steady state.

4.2.1. Natural frequency of the system matches lightly damped
resonant frequency

At lowmotor amplitude, the systemdynamics are onlyweakly
affected by the aerodynamic force and thus the resonant fre-
quency should be determined by the natural frequency of
the spring-wing system. Comparison of the experimentally
measured resonance frequency at the lowest amplitude with
natural frequency computed from spring stiffness and inertia
displays extremely good agreement (figure 6a). Thus our intui-
tion is confirmed that low amplitude wing oscillation leads to
small aerodynamic damping and the systembetter resembles a
weakly damped spring-mass oscillator.

4.2.2. Quasi-steady simulation predicts experimental resonant
frequency

Asmotor andwing amplitude increase, we observe reductions
in both kinematic gain and resonant frequency. This behaviour
is consistent with the quadratic velocity damping generated
by the aerodynamic force on the wing and has been observed
in other spring-wing experiments [20]. We sought to
determine if a quasi-steady aerodynamics model was suffi-
cient to model the spring-wing behaviour observed
in experiment. By performing numerical simulations
with identical parameters as the experiments of figure 5 we
measured the simulated resonant frequency across all
amplitudes.We find that the quasi-steady simulation resonant
frequency agrees well with the experimental resonance
frequency (figure 6b). This suggests that quasi-steady aerody-
namic modelling is sufficient to capture the spring-wing
relationship between amplitude and resonance frequency
across all motor amplitudes.

4.2.3. Quasi-steady simulation over-predicts kinematic gain
Despite the agreement in resonant frequency, we observed a
difference between the kinematic gain in the experiment
and the simulation (figure 6c). The simulation over-predicted
the kinematic gain for all resonance experiments by a
maximum of 20% at the highest experimental gains. The
over-prediction error grew with increasing gain, suggesting
a systematic error in the modelling of the spring-wing
system. The combination of disagreement between simulation
and experiment in kinematic gain and the good agreement in
resonant frequency suggests to us that unmodelled dissipation
from system friction is likely the cause. Coulomb friction in the
bearings would not influence the system resonant frequency,
but would decrease the output amplitude, consistent with
our observations. We opted not to include friction in our
modelling for two reasons: (i) we kept only the biologically
relevant damping terms in the system equations and
(ii) modelling friction can be complicated due in part to
highly nonlinear stick–slip phenomena [37].

4.3. Dynamic efficiency is amplitude and frequency
dependent

To determine the efficacy of elastic springs for energy
reduction in a flapping-wing system, we calculated the
dynamic efficiency, η, across all system and actuation par-
ameters (figure 7). Generally, we observe that dynamic
efficiency is maximum along the resonance curves for all
experiments. These results are consistent with the interpret-
ation that maximum kinematic gain corresponds to
maximum energetic benefits of having a spring, e.g. that the
system is at resonance. Notably, the dynamic efficiency is
very sensitive to oscillation frequency for low motor ampli-
tudes while higher motor amplitudes show a very broad
dynamic efficiency. The results at high amplitude are consist-
ent with the broad dynamic efficiency versus frequency curves
measured in experiments on a flapping-wing robot in [19].
5. Discussion
In this discussion, we recall the preliminary framework estab-
lished in §2. Through a change of variables we were able to
express the equations of motion of the series and parallel
spring-wing systems (equations (2.1) and (2.2)) with nearly
identical expressions. In this discussion, we now seek to inter-
pret the series elastic experiment and simulation results
above in the context of the non-dimensional variables:
the reduced stiffness K̂, the Weis-Fogh number N and the
structural damping coefficient γ.

5.1. The Weis-Fogh number N governs resonant
properties in spring-wing systems

The frequency response and kinematic gain of the spring-
wing system indicate that the resonant behaviour of the
system is dependent on the flapping amplitude and fre-
quency. In a standard spring-mass system with a viscous
damper, frequency-dependent kinematic gain is to be
expected. However, the dependence of the system resonant
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frequency on oscillation amplitude in the series spring-wing
system (figure 5) is different from that of the standard
viscously damped spring-mass system (unless the damping
is close to a critical value). Similar to the way the spring-
mass system is often reduced to non-dimensional ratios
(damping ratio ζ and reduced frequency ω/ωn) that govern
the oscillation behaviour, we here seek to show how the
non-dimensional parameters of equations (2.8) and (2.11)
govern the resonance properties of the system.

5.1.1. N is a measure of aerodynamic damping in spring-wing
resonance

An important metric of a resonant system is the quality factor,
Q, a measure of how damped the oscillator is and which, in
experiment, is the sensitivity of kinematic gain to frequency
change. For a linear spring-mass system, Q is independent
of oscillation amplitude, but it is inversely proportional to
the damping ratio, ζ. In the non-dimensional spring-wing
equations, the two terms that govern system damping are
the Weis-Fogh number N (the prefactor of the aerodynamic
term) and the structural damping loss modulus γ. We
expect that for any useful spring-wing system, the energy
loss due to aerodynamic damping should be much larger
than the parasitic energy loss from internal structural damp-
ing. Thus, we are inspired to examine how quality factor
varies with the Weis-Fogh number.

Examining the dependence ofQ on theWeis-Fogh number,
we observe that the quality factor grows approximately line-
arly with the Weis-Fogh number (figure 8a) across the
ranges observed in experiment. Simulations further reveal a
linear relationship between Weis-Fogh number and system
quality factor given by

Q ¼ c1N þ c2, (5:1)

where c1 = 0.18 ± 0.01 and c2 = 1.11 ± 0.03 (95% CI). By analogy
with the linear spring-mass system, the linear relationship
between Q and N reveals that the quantity 1/N is comparable
to the damping ratio for linear spring-mass systems.

The importance of this relationship is that Q has histori-
cally been used to evaluate the ability of insects to benefit
from elastic energy storage. Ellington, using a version of Q
defined as the ratio of peak kinetic energy versus energy dis-
sipated per stroke, has reported Q values for a variety of
insects such as the fruit-fly Drosophila melanogaster, hawkmoth
Manduca sexta, and the bumblebee Bombus terrestris [38].
Ellington uses those values to argue that insects would
benefit from resonant dynamics. While it is not possible to
directly compare the values he reports due to the use of
different expressions for Q, we can use the functional
relationship in equation (5.1) to also estimate quality factors
for the fruit-fly (N≤ 1, Q≈ 1.2), the hawkmoth (N = 3.6,
Q≈ 1.7), and the bumblebee (N = 3.1, Q≈ 1.6). Weis-Fogh
numbers for the relevant animals were provided by Weis-
Fogh in [12]. Quality factors above 1, in this case, confirm
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that insects may indeed benefit from resonance. By tying
those values to N, however, we provide the added benefit
of showing how Q factor may scale across species and
enable comparison of a wider range of species of insect.

5.1.2. The resonant frequency of a series spring-wing system
varies with N

Examination of the Weis-Fogh number shows that N grows
inversely with wing amplitude (equation (2.6)). Thus, exper-
iments that were performed at low motor amplitude
correspond to spring-wing systems with large N. This obser-
vation, coupled with the insight from above, immediately
provides understanding for why the resonant frequencies at
low amplitudes match the system’s natural frequency (figure
6a). At low amplitude (high N), the influence of damping is
very small (scales as 1

N) and thus increasing N in spring-wing
systems results in minimizing the effects of aerodynamic
nonlinearity and energy loss.

However, this insight does not fully explain why the
resonance frequency should change with amplitude. Examin-
ation of the relationship between the non-dimensional
variables that relate frequency (K̂) and damping (N) at reson-
ance shows a tight locus of points that indicate a potential
relationship (figure 8b). To understand this relationship, we
follow the method originally introduced by Bennett et al.
for the analysis of series elasticity in whale flukes [39].
In that paper, the authors determine the instantaneous
aerodynamic, inertial, and elastic power contributions in the
system and then minimize the total power consumption
over a wing-stroke (see electronic supplementary material,
§11.8) to identify an optimal combination of parameters.
The combination of parameters that minimize total power is
given by the following relationship:

K̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

N2

r
: (5:2)

We plot this relationship in figure 8b and observe good
agreement (R2 = 0.868, RMSE = 0.22) between the predicted
optimal series spring-wing relationship and observed
relationship at resonance. The observed differences between
experiment and theory could result from measurement
error, or alternatively friction, structural damping, or aerody-
namic effects that are unmodelled in the original derivation.
However, solving equation (5.2) in terms of the actual res-
onant frequency ωr and system parameters (see electronic
supplementary material, §11.8) shows very good agreement
over the frequency, motor amplitude parameter space
(figure 5, black line). For completeness, we note that for a par-
allel spring-wing system, the resonance relationship is
constant: K̂ ¼ 1 for all N [39].

The overall intuition from this resonance analysis is
that the Weis-Fogh number plays an important role in deter-
mining the spring-wing system’s resonant behaviour.
Furthermore, the relationship between N and K̂ at resonance
implies that these two variables likely define a non-dimen-
sional parameter space for general spring-wing systems of
arbitrary morphology, mechanical properties and actuation.
In the following sections, we will expand that space by
exploring how N, K̂ and structural loss factor γ influence
dynamic efficiency.
5.2. Energy loss from structural damping scales with
Weis-Fogh number in real spring-wing systems

Recent discoveries that structural damping in hawkmoth
thoraxes [1] and cockroach legs [14] may cause significant
energy loss prompts us to investigate how structural damp-
ing contributes to spring-wing energetics. To gain insight
into energy loss scaling, we consider the parallel arrangement
of a spring and a wing (figure 1a). The parallel arrangement,
as opposed to the series arrangement, is convenient because
the spring (and structural damper) is subject to identical dis-
placements as the wing hinges, and thus all forces (spring,
damping, aerodynamic and inertial) can be represented as
functions of wing angle. In the series case, the actuation
and wing trajectories are out of phase and therefore more
complicated, if not impossible, to express analytically. In
the parallel system, we can conveniently visualize all the rel-
evant forces acting on the wing by plotting torque
contributions versus wing angle (figures 1a and 9a).

We now consider the scaling of each of these forces
with the non-dimensional system parameters. Following
the method introduced by Weis-Fogh, we normalize all the
non-dimensional torques (equation (2.8)) by the peak aerody-
namic torque at mid-stroke. The result is the following set of
non-dimensional torques, expressed as functions of
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normalized wing angle, q. The tilde symbol represents
torques normalized by peak aerodynamic torque:

~Qaero ¼ (1� q2)
~Qinertial ¼ �Nq
~Qelastic ¼ K̂Nq

~Qstructural ¼ gK̂N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
:

9>>>>=
>>>>;

(5:3)

See electronic supplementary material, §11.9, for the full
derivation of these terms and §11.10 for an additional
derivation of the torque due to viscous damping.

In the parallel system, the ideal spring torque is exactly
opposite the inertial torque and thus cancels the inertial
work throughout the wing stroke, ~Qelastic ¼ ~Qinertial. This
relationship implies that K̂ ¼ 1 in the ideal parallel system.
Converting this expression back to dimensional form returns
the expected relationship that defines a parallel resonant
system, kp = Itω

2.
Critically for analysis of spring-wing energetics, all of these

equations can be integrated over the wing stroke to provide
expressions for the non-dimensional work the wing has per-
formed. In the case of parallel resonance (K̂ ¼ 1), we simply
need to integrate the ~Qaero and ~Qstructural terms since the inertial
and elastic work exactly cancel. Performing these integrals over
the range q = [− 1, 1] results in the following expressions:

~Waero ¼ 4
3

(5:4)

and

~Wstructural ¼ p

2
gN: (5:5)

Since aerodynamic and structural damping work are the
only sources of energy loss (and thus the only required
energy input) in the system we can now express the dynamic
efficiency in terms of these two energy losses:

h ¼
~Waero

~Waero þ ~Wstructural
(5:6)

¼ 1

1þ 3p
8
gN

: (5:7)
We now have an expression for the dynamic efficiency
of a parallel spring-wing system operating at the resonance
frequency. The dynamic efficiency is a function of only the
Weis-Fogh number, N, and the structural damping γ. Examin-
ation of this expression indicates that if there is no structural
damping in the system (γ = 0) the dynamic efficiency is con-
stant, η = 1, across all N, indicating that all input work goes
towards aerodynamic work at steady state. However, for
any non-zero structural damping in the transmission, the
dynamic efficiency is a monotonically decreasing function
of N, since a portion of the input work must be diverted to
overcome the internal structural damping.

This analysis of a parallel spring-wing system has pro-
vided insight into how structural damping influences the
mechanical efficiency of the flight transmission, i.e. dynamic
efficiency. We would like to consider the same theoretical
analysis for a series spring-wing system, but in this case the
theoretical approach becomes intractable. In a series spring-
wing system, the relative phase difference between wing
and actuator changes with actuation parameters and thus
the relative spring extension (and rate of extension) is not
as easily determined. Bennett et al. [39] presented an elegant
reformulation of the problem to generate a closed form
expression for the actuator power required in a series
spring-wing system. However, this method cannot be used
to include structural damping because it would require
knowledge of the actuator input kinematics. Thus, to deter-
mine the influence of structural damping in a series spring-
wing system, we will resort to numerical methods in the
next section.
5.3. Structural damping reduces peak dynamic
efficiency in series spring-wing systems

The dynamic efficiency η for series spring-wing systems was
determined through numerical simulation of the non-dimen-
sional equation of motion (2.11) across a range of N and K̂. As
expected in the case of no structural damping, γ = 0, the
dynamic efficiency was η = 1 for all values of N and K̂
along the series resonance curve (equation (5.2))
(figure 10a). These simulations also allow us to observe
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how η varies across the full (N, K̂) parameter space. In gen-
eral, we observe stronger sensitivity of η to changes in K̂ as
N increases. Recalling our analysis of the connection between
quality factor and Weis-Fogh number N, it is clear that, for a
spring-wing system with fixed morphology and no structural
damping, as N increases, the variation of η with frequency
becomes more significant.

For systems with non-zero structural damping, as
expected in any real system (and as observed recently [1,14]),
the dynamic efficiency in general decreases with increasing
N for all values of K̂. For small structural damping (γ = 0.1;
figure 10b) we observe a general similarity of the dynamic effi-
ciency to the undamped case. The gradient of the dynamic
efficiency can be observed by the spread of the contour lines,
where a steep gradient is indicated by closely spaced contour
lines. In the undamped case, the resonance relationship fol-
lows the line of minimum gradient in dynamic efficiency
(minrh): the resonance curve exactly follows the contour
line of η = 1 (and thusrh ¼ 0). Examination of η for increasing
structural damping indicates the curve of minimumrh likely
differs from the undamped resonance as illustrated in
figure 10a, where the dashed lines represent estimates of the
line of minimum gradient to guide the eye.

Evaluating the dynamic efficiency across the different
values of γ shows that ηmonotonically decreases with N, con-
sistent with our analysis of the parallel spring-wing system.
In the inset of figure 10b, we show the dynamic efficiency
results at resonance for the experimental series spring-wing
system. The experiment exhibits the same monotonically
decreasing trend of η with N. However the magnitude of η
in the experiment differs from that predicted by the simu-
lation with structural damping alone. Thus, similar to the
previous comparison of simulation and experiment (figure
6) we observe qualitatively similar trends between exper-
iment and simulation; however, the experiment exhibited
lower η, likely due to additional sources of energy loss
from friction and other unmodelled effects.

Overall, both the experimental and simulation results pro-
vide evidence that, for any spring-wing systemwith structural
damping, the dynamic efficiency decreases monotonically
with increasing N. Furthermore, dimensional analysis of the
viscous damping model (see electronic supplementary
material, § 11.10) suggests that internal damping of many
types has the same effect on dynamic efficiency. These results
are a bit counterintuitive from the discussion above, where
quality factor is observed to scale linearly with N (figure 8a).
For a perfect spring-wing system (γ = 0) it is true that increas-
ing N diminishes the relative energy loss from aerodynamic
work compared to the total energy of the oscillator (the defi-
nition of the quality factor). However, in the presence of
internal energy losses, the actuators have to do extra work to
overcome internal body damping, which scales with N. With
internal damping, the quality factor might still be the same
(since it is a ratio of energies) but the internal damping
decreases the useful energy of the oscillator and thus dynamic
efficiency.
5.4. Intermediate Weis-Fogh number may balance
damping losses and elastic benefits

The scaling of dynamic efficiency with N may help explain
why flapping-wing insects and robots tend to have an N in
the range of 1–10 across three orders of magnitude in body
mass (figure 11). A very low N means that aerodynamic
forces dominate and wing kinetic energy will be dissipated
by aerodynamic work rather than be stored in a spring [11].
High N, however, increases the internal energy losses from
structural damping and reduces the benefits of elastic
energy storage. Thus, flapping-wing insects and birds with
Weis-Fogh number in an intermediate range may balance
the positive benefits of spring-wing energy exchange with
the parasitic energy losses of internal structural damping.
In order to achieve high dynamic efficiency at hover, wing
geometries, flapping amplitudes, and wingbeat frequencies
may be tuned to maintain operation in this restricted
regime of Ns.

In addition to the constraints of damping, high N biologi-
cal spring-wing systems may not be possible due to
biomaterial or physiological constraints. For example, high N
spring-wing systems that are capable of hover (implying
modest wingbeat amplitude, θ0) would require large wing
inertia which may be impractical due to the possible impo-
sition of extra system weight. Similarly, from the elastic
materials perspective a high-N spring-wing system with
large wing inertia would require extremely stiff and resilient
elastic elements to operate at resonance. It may be that for
extremely large N spring-wings the required elastic stiffness
may exceed the practical regime of biological materials. Both
of these considerations however do not necessarily limit
robotic systems from being developed with high N through
appropriate inertial and stiffness design considerations.

Lastly, it is unlikely that dynamic efficiency at hover is the
only factor that dictates this range of morphologies. Other
factors, such as the effect of N on transient dynamics and con-
trol of wing kinematics, are likely to be significant. For
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example, in a spring-wing system with high N the wing
dynamics are dominated by inertial effects and thus wing
kinematics are likely insensitive to transient changes in aero-
dynamic forces. Such a high-N system may have wingbeat
kinematics that are relatively stable in the presence of gusts
of wind. However, in the opposite case of a low-N spring-
wing system, the flyer would be able to more easily modulate
wing kinematics and possibly wingbeat frequency for control
purposes. In these cases and others, the Weis-Fogh number
may provide a baseline for insight in broad comparative
study of flying insects, enabling identification of commonal-
ities between species as well as exceptional cases that merit
further study.
J.R.Soc.Interface
18:20200888
6. Conclusion
Many flapping-wing insects and birds possess elastic
elements in their body that may reduce the power demands
of flapping-wing flight. However, recent experiments have
demonstrated that insects are also subjected to internal
power loss from the deformation of their thorax. In this
paper, we have introduced three non-dimensional variables
for general spring-wing systems that govern oscillatory be-
haviour and dynamic efficiency. Inspired by the
foundational work of Weis-Fogh, we re-introduce the ratio
of maximum inertial force to aerodynamic force as the
Weis-Fogh number, N. Experiments and simulation illustrate
that N is a fundamental parameter of spring-wing systems,
analogous to the quality factor of a linear spring-mass
system. However, when spring-wing systems have internal
structural damping, we observe that dynamic efficiency
decreases with increasing N on resonance, reducing the
potential for useful energy storage and return. Overall,
these results provide a generic framework to understand
spring-wing systems which may enable us to learn more
about the inter-relationships of morphology and actuation
in flapping-wing insects and birds.
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