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Abstract

Energetically optimal gaits are of interest to both robotics and biology communities. Two respective goals
are: (a) finding goal functions for learning robot gaits which produce stable and efficient motion [1], [2]; and
(b) assessing biomechanical optimality of behaviors in organisms [3]. A common pitfall of the former goal is
a cumbersome experimental requirement, as each candidate gait must be physically tested. The latter goal is
challenging because it is difficult to assess the actual energetic cost organisms incur.

Our contribution to solving these problems is a novel approach for building gait-centered, local models from
data. By using data-driven analysis tools for oscillators [4] to inspect geometric locomotion models of systems,
we can predict system performance given small gait modifications. Our techniques are currently restricted to
friction dominated regimes in which the mechanical connection and cost of developing kinetic energy govern the
cost of transport (such as in [5], [6]). These local models eliminate the requirement for the empirical verification
of small design modifications in (a) and provide a pathway for benchmarking biological gait optimalty in (b).

We applied our methods to learning a swimming / slithering gait for a simulated 9 link swimmer [7],
initialized from a simple gait that used only two of the motors. Our algorithm converged to a gait that looks
serpentine after a dozen trials of 30 cycles each, in an 88 parameter gait space. This is notable for two reasons: (a)
a typical simplex gradient optimization, e.g. the Nelder-Mead algorithm, would require 89 trials just to initialize
the search routine; (b) at each gait, we relied on the simulated system noise to produce enough variability to
allow the gait parameter gradients to be identified.

Fig. 1. A nine link swimmer converges quickly to a serpentine behavior, even though the initial strategy locks 75% of the joints. A key
feature of this approach is that system noise is welcomed here. System noise directly informs the local models, providing a broader view
of the system’s dynamical landscape. This allows the swimmer to procedurally improve its performance with each physical test.

We are in the process of constructing a data-driven criterion for geometric gait optimality. Future plans
include fitting models to biological motion-capture data, allowing us for the first time to address optimality of
gaits without detailed mechanical locomotion models.
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