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Sliding friction between two dry surfaces is commonly described by the speed-
independent Amonton–Coulomb friction force law. However, there are many situa-
tions where multiple frictional contact points between two surfaces are “active” and each
can move at a different relative speed. Here, we study the sliding friction properties of a
system with multiple active contacts each with independent and controllable speed. We
demonstrate that multiple active contacts can produce controllable speed-dependent
sliding friction forces, despite each individual contact exhibiting a speed-independent
friction. We study in experiment a rotating carousel with ten speed-controlled wheels
in frictional contact with the ground. We first vary the contact speeds and demonstrate
that the equilibrium system speed is the median of the active contact speeds. Next we
directly measure the sliding friction forces and observe how the contact speeds can
control the force–speed curve of the system. In the final experiments, we demonstrate
how control of the force–speed curve can create sliding friction with a controllable
effective viscosity and controllable sliding friction coefficient. Surprisingly, we are
able to demonstrate that frictional contacts can create near frictionless sliding with
appropriate force–speed control. By revealing how active contacts can shape the force–
speed behavior of dry sliding friction systems, we can better understand animal and
robot locomotion and furthermore open up opportunities for new engineered surfaces
to control sliding friction.

locomotion | sliding | friction | active contacts

Sliding friction is one of the most important forces in the natural world and yet its
physics remain elusive. The simplest and most widely employed model of dry sliding
friction [attributed to both Amonton and Coulomb (1)] states that the friction force
between two bodies is proportional to the normal force between them, independent of the
contact area, and independent of the sliding speed. Many experiments from the nano- to
macroscales have highlighted counterexamples in which speed-dependent friction arises
in dry friction: stemming from phenomena such as plastic material deformation (2, 3),
thermal fluctuations in atomic-potentials (4), alignment and compatibility of mesoscale
textured surfaces (5–8), dynamics of filamentous and fibrillar surfaces (3, 9), macroscopic
surface vibrations (10–12), or even in rigid bodies sliding with combined translational
and rotational motion (13). However, in all these examples the frictional dynamics at
the contacts are coupled to the overall sliding speed.

Here, we are interested in the frictional properties of surfaces whose contact points have
independently controllable speeds, which can be considered as “active contacts” (14). A
fundamental motivating observation for studying active contact friction stems from recent
experiments of a walking robot (15). When multiple legs of the robot slipped against the
ground a speed-dependent traction force was observed, despite the individual contacts
having speed-independent Amonton–Coulomb friction. Active contacts are relevant
in a number of physical and biological phenomena such as ground-based locomotion
(14, 16–20) or manipulation of objects with multiple contact points (21, 22). Thus,
better understanding of the frictional properties of active contact systems can help shed
light on the physics of locomotion (23). However, the underlying physics and control
of active contact frictional systems are still relatively unknown. A fundamental challenge
of gaining insight into active contact sliding friction is the inherent nonlinear nature of
individual sliding frictional forces (24–26), and collections of sliding elements coupled
together (27–29). Despite the simple Amonton–Coulomb law being one of the earliest
forces introduced in an undergraduate physics class, the dynamics of systems with sliding
friction can be extremely complex to understand and model.

In this work, we will experimentally demonstrate that systems with multiple active
contacts exhibit novel sliding friction phenomena and present opportunities for the
modulation and control of sliding friction between two surfaces. Our hypotheses are
motivated by an initial thought experiment comparing single and multicontact systems
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with simple speed-independent friction of each contact. Follow-
ing this example, we introduce an active contact experiment, a
frictional carousel, that can individually control the contact speed
of ten points. Last, by varying the individual active contact speeds
in experiment, we demonstrate that active contacts can shape the
overall force–speed dynamics between two dry-friction surfaces.

1. Motivating Example

To motivate the novel physics of active contact friction, we
envision a representative comparison of three sliding systems all of
total mass, m, and with a coefficient of sliding friction � (Fig. 1):
1) a rigid block that slides at velocity V , 2) a rigid base moving
horizontally at velocity V with an attached wheel rotating at !1,
and with radius R, and thus tangential contact speed v1 = !1R,
and 3) a rigid base moving horizontally at velocity V with N
wheels attached, each with radius R and independent rotational
speeds, !i, thus each having tangential speeds vi = !iR. We are
interested in the relationship between the sliding speed of the
overall system, V , and the net frictional contact force exerted on
the system, F , through ground contacts. All three examples are
the same weight and the sliding friction of all individual contacts
are governed by the basic Amonton–Coulomb friction law.

The sliding friction force on a rigid block is F = −�mg V
|V |

which is the basic Amonton–Coulomb model of friction (red
curve Top row, Fig. 1). As long as the direction of motion is
the same, the sliding friction force is speed independent. By
adding a single active contact, such as a constant speed wheel,
the force–speed curve becomes shifted to the left or right with a
force of F = �mg v1−V

|v1−V | . However, with just one active contact
the force–speed relationship is still a “step-function” with speed-
independent friction. Lastly, the net force acting on a system with
multiple active contacts is governed by the summation of each
individual speed-independent contact,

F (V ) =
1
N
�mg

N∑
i=1

vi − V
|vi − V |

[1]

Here, we find a peculiar phenomenon, by combining many active
contacts that move at different speeds the net force–speed curve of
the system is no longer restricted to be a step-function but instead
can exhibit complex (and controllable) force–speed behavior
(Fig. 1, Bottom row; see SI Appendix for further description).

Fig. 1. Conceptual examples of sliding systems and their force–speed
curves for uniform contact (Top row), a single active contact (Middle row),
and multiple active contacts (Bottom row). When each system is moved with
net speed V they experience a frictional resisting force F shown in the Right
column accordingly.

To intuitively understand the force–speed relationship in the
case of multiple active contacts we imagine that the active contact
speeds are ordered from slowest to fastest (vi < vi+1). At system
speed V < v1 all N wheels are actively pulling forward and the
net force is F = +�mg, however when V exceeds the speed of
the slowest wheel the sign of that friction force changes and now
N − 1 wheels are pulling forward, and one wheel is pulling back
resulting in a total force of F = 1

N (N − 2)�mg. As the system
speed is further increased the process will continue and produce a
stair-stepped force–speed relationship until ultimately the sliding
speed is faster than the fastest active contact, vN < V , and all
contacts generate a negative force (F = −�mg). We illustrate
this process in SI Appendix. This thought experiment introduces
the fundamental observation that multiple active contacts can
create controllable force–speed curves.

2. Experiment Characterization

To study the physics of active contact systems we developed
a rotational “carousel.” The carousel consisted of ten wheels
arranged around a central axis, each wheel’s rotation speed was
generated by an individual DC motor (Fig. 2 A and B). By
utilizing a rotational system we are able to study the steady-state
motion of the carousel indefinitely, without the space limitations
that would be present if studying a similar linear sliding system. In
all experiments, we measured the rotational rates of the individual
wheels and the overall system. To enable comparison between the
active contact speed of the wheels and the motion of the carousel,
we adopt the convention of transforming all rotational rates to
their equivalent linear speeds. The linear speed of the active
contacts are determined by vi = R!i, where R = 4.32 cm is the
wheel radius and !i the rotational speed of the ith wheel. The
system’s equivalent linear speed is determined by the carousel
rotation rate, Ω, and the center-to-contact length (L = 27.1 cm)
given by V = LΩ.

To characterize the frictional properties of the carousel we
measured the friction force from the wheels when pushing against
a stationary load cell. The friction force from each wheel is
the same and the total friction force is linearly dependent on
the number of motors that are spinning in contact with the
ground (Fig. 2C ). Furthermore, the friction force is independent
of the speed of the wheel as expected for dry Amonton–Coulomb
friction (Fig. 2C ).

The motors were chosen with a large gear ratio which ensured
that the force from the wheel contact friction slipping on the
ground had only a small influence on the steady-state speed of
each motor. We measured this by holding the carousel stationary
and then releasing it and measuring the change in individual
motor speeds,!i. We observed that when the system was released
from being held at rest the speed of each motor increased by
4.6 ± 2.0%. Thus, our system is capable of generating relatively
steady-state contact speeds between multiple points of contact
that each behave as ideal, speed-independent, dry Amonton–
Coulomb friction contacts.

3. Equilibrium Properties of Multicontact
Friction

We first sought to determine how the steady-state speed of
an active multicontact system is related to the statistics of the
individual contact speeds. In 739 experiments, we studied the
equilibrium speed of the rotational carousel with randomly
chosen wheel speeds. In each experiment, we selected at random
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A C DB

Fig. 2. System design and friction properties. (A and B) Schematic of multicontact friction rotational “carousel.” An array of ten motors drive individual wheels
of radius R at rotational speed !i , measured by encoders on each motor. The entire carousel is free to rotate and a central encoder measures the system
rotation rate, Ω. (C) (Left) The total friction force is linearly dependent on the number of motors that are in contact with the ground. (Right) The total friction
force of ten motors with the same contact speed is independent of the tangential wheel contact speed. (D) The speed of individual motors is not affected by
slip at the wheel–ground interface.

ten speeds for the active contacts (vi) and observed the time
evolution of the system speed (V ) when started from rest.
Fig. 3A demonstrates the time-dependent speeds of the system
(black curve) and active contacts (color curves) in a single
experiment. The active contacts reach their steady-state speeds
quickly (≈30 ms) and remain constant with small fluctuations
while the system takes a much longer time to approach steady
state. See SI Appendix for an extended discussion of the
startup dynamics and Movie S1 for a demonstration of this
experiment.

The equilibrium speed of an active contact system occurs when
the friction forces from all contacts sum to zero. Since the sliding
force from each contact is not speed dependent, the equilibrium
condition for an active contact system is simply determined by the
median of the set of active contact speeds (a similar argument was
presented in ref. 18). We find in experiment very good agreement
with this prediction: The system speed V scaled linearly with
the median speed of the ten motors across a broad range of
experiments and motor speeds (Fig. 3B). To further illustrate that
it is the median value of the contact speeds that sets the steady-
state speed, we performed experiments in which: 1) the mean of
the active contact speeds was held constant while the median of
the speeds was varied, or 2) the median of the active contact speeds
was held constant and the mean was varied. In these subsequent
experiments, we again observed that the system speed followed

the median speed of the active contact speeds (Fig. 1 C, Top)
even when the mean of the wheel speeds were varied. However,
when the mean of the wheel speeds was changed while holding
the median constant the system speed did not change (Fig. 1 C,
Bottom).

These first experiments highlight some of the novel features
of sliding friction with active contacts. For example, since the
median of a set is unchanged when multiplied by a constant
value this suggests that the equilibrium speed of active contact
systems are unaffected by changing the coefficient of friction
in Eq. 1. This has been observed experimentally recently in
walking experiments with robots on different textured substrates
(15). Furthermore, the median of a set is remarkably robust to
perturbations and is unaffected by large outliers. We tested this
by allowing the fastest active contacts to vary sinusoidally in
time while keeping the median of the active contacts constant.
The system speed was unaffected by these outlier contact speeds
and held its steady state at the median value of the active
contacts.

4. Measurement of Force–Speed Curves

In our motivating example (Fig. 1) we hypothesized that control
of active contact speeds can generate a controllable friction
force–speed relationship. We next set to directly measure the

A B C

Fig. 3. Equilibrium behavior of multicontact frictional systems. (A) Speed versus time of the individual active contacts (vi , colored lines) and the system (V ,
black line). After a transient startup period the contacts and system settle into a steady state. (B) The system speed is linearly related to the median speed of
the ten wheels (N = 739 experiments). The red curve is fit line, y = mx, with slope m = 0.992± 0.005. The Inset shows a histogram of the ratio between system
speed and median speed. (C) In additional experiments, we held the mean of the active contacts constant while varying the median (Top plot), or we held the
median constant while varying the mean (Bottom plot). These experiments clearly show the system speed is unaffected by the mean wheel speed and only
dependent on the median.
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force–speed relationship in our active contact system. A torque
sensor (Futek, TFF400) was mounted on an optical table and
the acrylic floor and carousel were mounted atop the sensor. By
manually rotating the system quasi-statically while the wheels are
rotating we are able to directly measure the force–speed curve of
our active contacts system.

We first set all active contacts to have identical speed (vi = v)
and measured the force–speed relationship. We predict that the
force–speed curve for this experiment will resemble that of a single
active contact (Fig. 1). In experiment, we observed this force–
speed step function (Fig. 4A) which matched the commanded
force–speed profile well (shown in black, Fig. 4A). We observed
slight deviation from the vertical transition between positive and
negative force which we attribute to backlash and compliance
within the motor drive system and the carousel “arms” as the
friction force reverses direction. In SI Appendix, we provide
simulation results demonstrating how compliance in the active
contact system introduces variance in the force–speed curves.

We next set the active contacts to have varied and uniformly
spaced speeds to generate controlled linear force–speed depen-
dence, in effect controlling the interaction “viscosity” with the
ground. We characterize the active contact “viscosity” through
the linear slope of the force–speed curve, ΔF

ΔV . We observed
good agreement between the commanded “Viscosity” and that
observed from the force–speed measurements. This experiment
highlights an example of how an active multicontact frictional sys-
tem can generate and control the force–speed curve between two
surfaces.

Last, since the equilibrium speed of an active multicontact
system is determined by the median of the contact speeds there is
a peculiar phenomenon that arises dependent on whether there
are an even or odd number of frictional contacts. A set with
an odd number of elements always has a well-defined median,
whereas this is not always the case for an even number set. In sets
with even numbers of members the median may not be unique
and can instead span a range within the set. For example, consider
a system with four contact speeds v = {−2,−1, 1, 2}. There is
no unique median speed of this set and thus the steady-state
system speed, Vss (where F = 0) can be anywhere in the range

−1 ≤ Vss ≤ +1. For a multicontact frictional system when the
median is not defined this effectively means that when the system
slides at speeds within the median range it should experience zero
frictional force from the ground.

We tested this hypothesis by setting five active contacts to
vmin = −0.35 m/s and an opposing five active contacts to
vmax = +0.35 m/s. The force–speed curve from this experiment
yielded a stepped pattern consistent with the model prediction
(data in gray, model in black Fig. 4C ). We show an example
of this “frictionless” state in Movie S1. Remarkably when the
system is sliding within the median range of the active contacts
it experiences extremely low sliding friction forces despite all the
wheels maintaining frictional contact with the ground. Thus,
we hypothesize that controlling active contact speeds can enable
control of the overall sliding friction coefficient of the system. In
the next section, we demonstrate control of the “viscosity” and
friction coefficient through active contact speed control.

5. Contact “Viscosity” Control

In experiment, we set the range of active contacts speeds to be
uniformly distributed over a desired range to achieve a stepped
linear force–speed step profile (See Fig. 4B for an example). The
effective viscosity of this force profile is calculated as ΔF

ΔV . In
490 experiments, we randomly varied the controlled force–speed
slope and measured the system speed versus time while started
from rest and allowed to reach steady state.

If the contact forces were governed by real viscous forces the
system speed would exponentially approach steady state with a
time-scale � = m

ΔF/ΔV , where m is the system inertia (Fig. 1).
To compare our commanded “viscosity” with the measurement,
we fit an exponential curve to the speed versus time curve of the
system and determined the steady-state time constant �. The
time-constant should scale as 1

� ∝
ΔF
ΔV in a viscous system.

The experimental observations agreed well with the effective-
viscosity prediction indicating that by shaping the force–speed
curve through active contacts we can mimic viscous force in
dry-friction sliding (Fig. 5).
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Fig. 4. Sliding friction force measurements from active contacts with programmed force–speed curves (black lines). In the first experiment (A), all speeds are
equal producing a net dry friction force–speed curve. In the next two experiments (B), we commanded different effective viscosity force–speed curves. The last
experiment (C) set half the contacts to −vmax and half the contacts to +vmax creating a force–speed regime with near zero sliding friction force.
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Fig. 5. Experiment to measure the time to reach steady state (�) with
differing approximately linear force–speed curves with effective viscosity of
ΔF
ΔV (Fig. 4B). Plot shows the inverse of the startup time versus the effective
viscosity parameter for an active contact system.

6. Sliding Friction Coefficient Control

In a final set of experiments, we demonstrate how the coefficient
of sliding friction can be controlled by modulating active con-
tacts. In sliding friction force measurements, we demonstrated
that by setting half the active contacts to +vmax and half to−vmax
the sliding friction force is small and near zero (Fig. 4C ). This
observation motivates a method to control the sliding friction
of an active contact system. By setting pairs of active contacts
to be at opposite speeds, that contact pair will generate net
zero sliding force when the system speed lies within the range
−vmax < v < +vmax (Movie S1). Thus, in a system with N total
active contacts there can be up to N/2 contacts “deactivated.”
Since the normal force is unchanged when the active contacts
speeds are changed, this method effectively changes the sliding
friction coefficient, �.

To test this hypothesis in experiment, we first set all the active
contact speeds to be equal and positive at vi = +vmax and let the
system speed increase from rest to the steady-state V = +vmax.
Once at steady state, we next commanded 5 − n of the active
contacts to +vmax and 5 + n of the contacts to −vmax. The
rationale for this is that by varying n = {0, 1, 2, 3, 4, 5} should
produce a controlled sliding friction coefficient ranging from
� = �0{0, 0.2, 0.4, 0.6, 0.8, 1} respectively (Fig. 6).

Changing the speed of the active contacts causes the system to
approach a new steady-state speed while sliding. We measured
the sliding friction force as the system transitions to the new
steady-state speed. We then calculate the change in sliding
friction coefficient as the ratio of �/�0 = F/F0, where F0 is
the friction force of the sliding system when the active contacts
are all set to vi = 0 (the brake condition in Fig. 6). We observed
good agreement between the model prediction and the measured
sliding friction forces. At the extreme of setting equal forward
and reverse contacts (n = 0) we measured a net reduction of the
coefficient of friction by 91± 4%.

Similarly, we measured the time for the system to transition
between the steady-state speeds (ΔT ). For a constant friction
force causing a change in speed from +vmax to −vmax the
time-scale for this should vary inversely proportional to friction
coefficient, ΔT ∝ 1

�/�0
. We similarly observe good agreement

between this prediction and our measured steady-state transition
time (Fig. 6). Both experimental observations indicate that by

controlling active contact pairs we can selectively modify the
sliding friction of the system in real-time.

7. Discussion and Conclusion

In this work, we have studied the sliding friction of a body that
can independently control the speed of its contact points, called
an “active contact” system (14). The physics of active contacts
are important in understanding frictional locomotion systems,
which encompass nearly all terrestrial animals and ground-based
robots. The fundamental novelty of active contact systems is the
ability to generate controllable force–speed friction behavior from
individual speed-independent forces. Prior work has illustrated
how periodic motion of active contacts can generate effective
viscous-like forces (15) through time-averaging of the contacts
over a gait. In this manuscript, we demonstrated that multiple
active contacts at different speeds can create an “instantaneous”
force–speed curve without the need for averaging. Thus, we
predict that in terrestrial locomotion systems with large friction
compared to inertial forces [called the coasting number (30)],

A

B C

Fig. 6. Demonstration of friction control from active contacts. (A) Active
contact (gray lines) and system (purple line) speeds and friction force (black
line) versus time for two experiments. The Upper plot shows the case where
active contacts are turned off, called the brake condition, and the system
comes to rest from steady state speed. Note the associated large negative
friction force in opposition to the positive direction of motion when the
system is braked at the end of the gray shaded region. The Bottom plot
shows the case where half active contacts are set to −vmax and half at
+vmax. At the initiation of the active contact speed change (at the end of
the gray shaded region), there is an initial force transient followed by a small
friction force as the system gradually slides to rest. (B) The friction coefficient
as a function of the sum of positive and negative speed active contacts.
Coefficient is normalized to the value measured when the system is braked
by setting all active contacts to v = 0. (C) The transition time ΔT between
steady-state speeds versus the measured effective friction coefficient across
all experiments. Black curve is the function ΔT = 0.35

�/�0
.
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multicontact gaits will establish an instantaneous force–speed
relationship that may change throughout the gait. Beyond just
the effective viscous behavior of active contact systems our
experiments have demonstrated that a much broader repertoire
of force–speed behavior can be achieved through the control of
active contacts.

It is instructive to consider how the physics of active contact
frictional systems can be described by the set properties of active
contact speeds. For example, we have demonstrated that the
equilibrium speed of an active contact system with identical
friction forces at each contact is determined by the median of
the set of active contact speeds (Fig. 3). We now propose that the
force–speed curves of an active contact system can be described
through the statistical distribution of the active contact speed set.
Formally we posit that the net force–speed curve of an active
contact system with identical friction forces is related to the
cumulative distribution function (CDF(V )) of the active contact
speeds through the following relationship

F (V ) = �mg(1− 2CDF(V )) [2]

We directly demonstrate this in the case of a discrete set of N
active contacts speeds, vi, by expressing the discrete probability
density of contact speeds as P(V ) = 1

N
∑N

i=1 �(V − vi), where
�(x) is the Dirac delta function. Integrating the probability dis-
tribution of the contact speeds yields the cumulative distribution
function CDF(V ) =

∫
∞

−∞
P(V ) = 1

N
∑N

i=1
1
2

(
1 + V−vi

|V−vi|

)
.

Through substitution, it is easy to show that the standard
equation for friction (Eq.1) is equal to our probabilistic definition
(Eq. 2). This reexpression of the force–speed relationship is
more than just a convenient notational change, it enables an
analytical method for directly calculating F (V ) in continuous
active contact systems such as rotating and sliding disks (13) or
slithering snakes (20) moving over a rigid surface. By extension,
the drag forces of slow movement within granular material (GM)
are speed independent (31) and occur over the continuous surface
of the body, and thus the motion of active bodies moving within
GM (30, 32–34) may possibly be described by the same physics
of continuous active contact systems.

While our model and experiment are in good agreement,
illustrating the validity of this thought-experiment approach,
we note that the experiment is substantially simplified from
the real-world cases of active contacts such as locomotion.
For example, contacts at the microscale typically have more
complex friction forces due to surface chemistry, rate and state
effects of contact, and other nanoscale/microscale phenomena.
Furthermore, macroscopic systems in the real-world may have
active contacts with time varying coefficients of friction or applied
normal forces. In this case, we now have to consider each active
contact, vi, with its own associated friction force, fi. By treating
fi as weights on the probability distribution of contact speeds we
can still solve for equilibrium speed as the weighted median of the
set, and the force–speed curve by replacing the CDF(V ) in Eq. 2
with the weighted cumulative distribution function. Thus, while
our demonstrated experiments are on a relatively simple platform
the ideas can be translated to more complex active contact systems
through the properties of weighted sets.

Other experiments on dry sliding friction systems have
observed a speed-dependent force from nonuniform contact
speeds. For example, a disk-sliding on a surface will slide over
a longer distance (and thus experience less frictional force) if it

is also spinning about the vertical axis (13). Similarly, a wine
cork is easier to move along the axial direction when the cork is
rotated: rotation redirects the frictional force along the tangential
direction and thus reduces the axial force component, a property
that has been used to allow robots to more easily insert pegs
into holes (35). Furthermore, other speed-dependent frictional
phenomena have been observed in frictional “resistive media”
such as multiparticle systems such as dense suspensions, granular
material, and soils (36–39).

In the experiments of this paper we have demonstrated how
the control of active contact speeds can be used to modulate, in
real-time, the frictional interactions between sliding objects. It is
estimated that 30% of the world’s energy is lost to sliding friction
per year (40), thus understanding and controlling sliding friction
has extreme importance. Beyond just an oddity of locomotion
or frictional mechanics, this work provides understanding of the
physics of active contact systems and provides inspiration for
engineered solutions for friction control.

8. Materials and Methods

8.1. Analysis and Statistics. Encoder data were filtered with a low-pass
butterworth filter at 15 Hz cutoff frequency and numerically differentiated
to produce speed. Median values of the contact speeds were calculated by
averaging the last 2 s of each experiment and then using the median function in
matlab. Since all experiments were performed with an even number of contacts
the median may not be uniquely defined in the experiment (See SI Appendix
document). In all cases, we use the matlab approximation of the median value
which is the average of the two middle values of a set.

8.2. Carousel Design. The rotational carousel was fabricated from laser cut
acrylic. The central plate of the carousel was mounted on a rotational turntable
“lazy susan” bearing which provided low rotational resistance while supporting
the motor electronics. Each “spoke” of the carousel was attached via a closet
hinge to the central plate to ensure that an equal normal force was distributed
across all ten wheels in contact with the ground. On each of the ten spokes
we mounted an individual wheel of constant radius, R = 4.5 cm that was
independently controlled by an individual DC motor and motor driver. The
wheels were made of plastic and the ground was acrylic. The DC motors (Pololu,
#4866) used a 75:1 gear reduction between the motor and the output wheel.
The motor speeds are determined by the motor voltages which are controlled
through two Teensy microcontrollers which generated pulse-width-modulation
control signals for five motors each. Each motor had a magnetic encoder attached
to its shaft with a resolution of 48 counts per revolution. The encoder resolution
is multiplied by the gear ratio (75:1) when considered at the wheel contact and
thus yielded an equivalent linear resolution of 78μm, however we estimate that
through backlash in the gear box the actual resolution is approximately≈1 mm
The central plate of the carousel used a capacitive rotational encoder (AMT CUI
AMT103-V) with 8,192 counts per revolution. Encoder counts for the motors and
carousel were recorded on digital quadruture channels on the microcontrollers
at rates exceeding 100 kHz. During an experiment, we reported encoder and
the motor counts and force data at 50 Hz and the data was logged by the
Teensy microcontroller over serial communication to computer. All electrical
signals to the rotational carousel passed through a 12-wire electrical slip ring
(DigiKey 1528-1176-ND) which allowed for continuous rotation without wire
tangle.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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