Flexibility and compliance can be beneficial for mobile robots that have to navigate unstrucured environments. Limbs and bodies that can bend in response to unexpected perturbations enable effective movement capabilities. We are developing new methods to fabricate flexible, compliant, or soft mobile robots using 3D printing and laser cutting.
Running dynamics for small scale insects and robots are poorly understood. We explore legged movement at the small-scale by performing biomechanics experiments on high-speed running ants. We use micro-robotic models to test hypothesis of dynamic running in small scale systems.
Running dynamics for small scale insects and robots are poorly understood. We explore legged movement at the small-scale by performing biomechanics experiments on high-speed running ants. We use micro-robotic models to test hypothesis of dynamic running in small scale systems.
Power efficiency of milli-scale robots can be improved through mechanical designs incorporating elastic structures for energy storage and recovery. Locomotion movements are often periodic (flapping wings, running gaits) and so actuation and power transmission through resonant systems could be beneficial. However, resonance and agility require conflicting modes of actuation: resonance favors actuation at a single frequency and agility favors actuation across a wide range of frequencies. We seek to resolve this conflict in locomotion efficiency and agility through novel mechanical design of compliant microrobots.
Power efficiency of milli-scale robots can be improved through mechanical designs incorporating elastic structures for energy storage and recovery. Locomotion movements are often periodic (flapping wings, running gaits) and so actuation and power transmission through resonant systems could be beneficial. However, resonance and agility require conflicting modes of actuation: resonance favors actuation at a single frequency and agility favors actuation across a wide range of frequencies. We seek to resolve this conflict in locomotion efficiency and agility through novel mechanical design of compliant microrobots.